934 resultados para Portata cardiaca, Fick, termodiluizione, Cardiac output, Indicatore, Pazienti
Resumo:
Employing multilevel inverters is a proper solution to reduce harmonic content of output voltage and electromagnetic interference in high power electronic applications. In this paper, a new pulse width modulation method for multilevel inverters is proposed in which power devices’ on-off switching times have been considered. This method can be surveyed in order to analyse the effect of switching time on harmonic contents of output voltage in high frequency applications when a switching time is not negligible compared to a switching cycle. Fast Fourier transform calculation and analysis of output voltage waveforms and harmonic contents with regard to switching time variation are presented in this paper for a single phase (3, 5)-level inverters used in high voltage and high frequency converters. Mathematical analysis and MATLAB simulation results have been carried out to validate the proposed method.
Resumo:
Multi-output boost (MOB) converter is a novel DC-DC converter unlike the regular boost converter, has the ability to share its total output voltage and to have different series output voltage from a given duty cycle for low and high power applications. In this paper, discrete voltage control with inner hysteresis current control loop has been proposed to keep the simplicity of the control law for the double-output MOB converter, which can be implemented by a combination of analogue and logical ICs or simple microcontroller to constrain the output voltages of MOB converter at their reference voltages against variation in load or input voltage. The salient features of the proposed control strategy are simplicity of implementation and ease to extend to multiple outputs in the MOB converter. Simulation and experimental results are presented to show the validity of control strategy.
Resumo:
This paper presents a new DC-DC Multi-Output Boost (MOB) converter which can share its total output between different series of output voltages for low and high power applications. This configuration can be utilised instead of several single output power supplies. This is a compatible topology for a diode-clamed inverter in the grid connection systems, where boosting low rectified output-voltage and series DC link capacitors is required. To verify the proposed topology, steady state and dynamic analysis of a MOB converter are examined. A simple control strategy has been proposed to demonstrate the performance of the proposed topology for a double-output boost converter. The topology and its control strategy can easily be extended to offer multiple outputs. Simulation and experimental results are presented to show the validity of the control strategy for the proposed converter.
Resumo:
Purpose Multi-level diode-clamped inverters have the challenge of capacitor voltage balancing when the number of DC-link capacitors is three or more. On the other hand, asymmetrical DC-link voltage sources have been applied to increase the number of voltage levels without increasing the number of switches. The purpose of this paper is to show that an appropriate multi-output DC-DC converter can resolve the problem of capacitor voltage balancing and utilize the asymmetrical DC-link voltages advantages. Design/methodology/approach A family of multi-output DC-DC converters is presented in this paper. The application of these converters is to convert the output voltage of a photovoltaic (PV) panel to regulate DC-link voltages of an asymmetrical four-level diode-clamped inverter utilized for domestic applications. To verify the versatility of the presented topology, simulations have been directed for different situations and results are presented. Some related experiments have been developed to examine the capabilities of the proposed converters. Findings The three-output voltage-sharing converters presented in this paper have been mathematically analysed and proven to be appropriate to improve the quality of the residential application of PV by means of four-level asymmetrical diode-clamped inverter supplying highly resistive loads. Originality/value This paper shows that an appropriate multi-output DC-DC converter can resolve the problem of capacitor voltage balancing and utilize the asymmetrical DC-link voltages advantages and that there is a possibility of operation at high-modulation index despite reference voltage magnitude and power factor variations.
Resumo:
This paper presents a new multi-output DC/DC converter topology that has step-up and step-down conversion capabilities. In this topology, several output voltages can be generated which can be used in different applications such as multilevel converters with diode-clamped topology or power supplies with several voltage levels. Steady state and dynamic equations of the proposed multi-output converter have been developed, that can be used for steady state and transient analysis. Two control techniques have been proposed for this topology based on constant and dynamic hysteresis band height control to address different applications. Simulations have been performed for different operating modes and load conditions to verify the proposed topology and its control technique. Additionally, a laboratory prototype is designed and implemented to verify the simulation results.
Resumo:
Nonlinear filter generators are common components used in the keystream generators for stream ciphers and more recently for authentication mechanisms. They consist of a Linear Feedback Shift Register (LFSR) and a nonlinear Boolean function to mask the linearity of the LFSR output. Properties of the output of a nonlinear filter are not well studied. Anderson noted that the m-tuple output of a nonlinear filter with consecutive taps to the filter function is unevenly distributed. Current designs use taps which are not consecutive. We examine m-tuple outputs from nonlinear filter generators constructed using various LFSRs and Boolean functions for both consecutive and uneven (full positive difference sets where possible) tap positions. The investigation reveals that in both cases, the m-tuple output is not uniform. However, consecutive tap positions result in a more biased distribution than uneven tap positions, with some m-tuples not occurring at all. These biased distributions indicate a potential flaw that could be exploited for cryptanalysis.
Resumo:
In this paper, we present a ∑GIi/D/1/∞ queue with heterogeneous input/output slot times. This queueing model can be regarded as an extension of the ordinary GI/D/1/∞ model. For this ∑GIi/D/1/∞ queue, we assume that several input streams arrive at the system according to different slot times. In other words, there are different slot times for different input/output processes in the queueing model. The queueing model can therefore be used for an ATM multiplexer with heterogeneous input/output link capacities. Several cases of the queueing model are discussed to reflect different relationships among the input/output link capacities of an ATM multiplexer. In the queueing analysis, two approaches: the Markov model and the probability generating function technique, are adopted to develop the queue length distributions observed at different epochs. This model is particularly useful in the performance analysis of ATM multiplexers with heterogeneous input/output link capacities.
Resumo:
This correspondence paper addresses the problem of output feedback stabilization of control systems in networked environments with quality-of-service (QoS) constraints. The problem is investigated in discrete-time state space using Lyapunov’s stability theory and the linear inequality matrix technique. A new discrete-time modeling approach is developed to describe a networked control system (NCS) with parameter uncertainties and nonideal network QoS. It integrates a network-induced delay, packet dropout, and other network behaviors into a unified framework. With this modeling, an improved stability condition, which is dependent on the lower and upper bounds of the equivalent network-induced delay, is established for the NCS with norm-bounded parameter uncertainties. It is further extended for the output feedback stabilization of the NCS with nonideal QoS. Numerical examples are given to demonstrate the main results of the theoretical development.
Resumo:
Nonlinear filter generators are common components used in the keystream generators for stream ciphers and more recently for authentication mechanisms. They consist of a Linear Feedback Shift Register (LFSR) and a nonlinear Boolean function to mask the linearity of the LFSR output. Properties of the output of a nonlinear filter are not well studied. Anderson noted that the m-tuple output of a nonlinear filter with consecutive taps to the filter function is unevenly distributed. Current designs use taps which are not consecutive. We examine m-tuple outputs from nonlinear filter generators constructed using various LFSRs and Boolean functions for both consecutive and uneven (full positive difference sets where possible) tap positions. The investigation reveals that in both cases, the m-tuple output is not uniform. However, consecutive tap positions result in a more biased distribution than uneven tap positions, with some m-tuples not occurring at all. These biased distributions indicate a potential flaw that could be exploited for cryptanalysis
Resumo:
The theory of nonlinear dyamic systems provides some new methods to handle complex systems. Chaos theory offers new concepts, algorithms and methods for processing, enhancing and analyzing the measured signals. In recent years, researchers are applying the concepts from this theory to bio-signal analysis. In this work, the complex dynamics of the bio-signals such as electrocardiogram (ECG) and electroencephalogram (EEG) are analyzed using the tools of nonlinear systems theory. In the modern industrialized countries every year several hundred thousands of people die due to sudden cardiac death. The Electrocardiogram (ECG) is an important biosignal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computerbased intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and four classes of arrhythmia. This thesis presents some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. Several features were extracted from the HOS and subjected an Analysis of Variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, seven features were extracted from the heart rate signals using HOS and fed to a support vector machine (SVM) for classification. The performance evaluation protocol in this thesis uses 330 subjects consisting of five different kinds of cardiac disease conditions. The classifier achieved a sensitivity of 90% and a specificity of 89%. This system is ready to run on larger data sets. In EEG analysis, the search for hidden information for identification of seizures has a long history. Epilepsy is a pathological condition characterized by spontaneous and unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic early detection of the seizure onsets would help the patients and observers to take appropriate precautions. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, these features are used to train both a Gaussian mixture model (GMM) classifier and a Support Vector Machine (SVM) classifier. Results show that the classifiers were able to achieve 93.11% and 92.67% classification accuracy, respectively, with selected HOS based features. About 2 hours of EEG recordings from 10 patients were used in this study. This thesis introduces unique bispectrum and bicoherence plots for various cardiac conditions and for normal, background and epileptic EEG signals. These plots reveal distinct patterns. The patterns are useful for visual interpretation by those without a deep understanding of spectral analysis such as medical practitioners. It includes original contributions in extracting features from HRV and EEG signals using HOS and entropy, in analyzing the statistical properties of such features on real data and in automated classification using these features with GMM and SVM classifiers.
Resumo:
Background: Nurse-led telephone follow-up offers a relatively inexpensive method of delivering education and support for assisting recovery in the early discharge period; however, its efficacy is yet to be determined. Aim: To perform a critical integrative review of the research literature addressing the effectiveness of nurse-led telephone interventions for people with coronary heart disease (CHD). Methods: A literature search of five health care databases; Sciencedirect, Cumulative Index to Nursing and Allied Health Literature, Pubmed, Proquest and Medline to identify journal articles between 1980 and 2009. People with cardiac disease were considered for inclusion in this review. The search yielded 128 papers, of which 24 met the inclusion criteria. Results: A total of 8330 participants from 24 studies were included in the final review. Seven studies demonstrated statistically significant differences in all outcomes measured, used two group experimental research design and valid and reliable instruments. Some positive effects were detected in eight studies in regards to nurse-led telephone interventions for people with cardiac disease and no differences were detected in nine studies. Discussion: Studies with some positive effects generally had stronger research designs, large samples, used valid and reliable instruments and extensive nurse-led educative interventions. Conclusion: The results suggest that people with cardiac disease showed some benefits from nurse-led/delivered telephone interventions. More rigorous research into this area is needed.
Resumo:
Background: People with cardiac disease and type 2 diabetes have higher hospital readmission rates (22%)compared to those without diabetes (6%). Self-management is an effective approach to achieve better health outcomes; however there is a lack of specifically designed programs for patients with these dual conditions. This project aims to extend the development and pilot test of a Cardiac-Diabetes Self-Management Program incorporating user-friendly technologies and the preparation of lay personnel to provide follow-up support. Methods/Design: A randomised controlled trial will be used to explore the feasibility and acceptability of the Cardiac-Diabetes Self-Management Program incorporating DVD case studies and trained peers to provide follow-up support by telephone and text-messaging. A total of 30 cardiac patients with type 2 diabetes will be randomised, either to the usual care group, or to the intervention group. Participants in the intervention group will received the Cardiac-Diabetes Self-Management Program in addition to their usual care. The intervention consists of three faceto- face sessions as well as telephone and text-messaging follow up. The face-to-face sessions will be provided by a trained Research Nurse, commencing in the Coronary Care Unit, and continuing after discharge by trained peers. Peers will follow up patients for up to one month after discharge using text messages and telephone support. Data collection will be conducted at baseline (Time 1) and at one month (Time 2). The primary outcomes include self-efficacy, self-care behaviour and knowledge, measured by well established reliable tools. Discussion: This paper presents the study protocol of a randomised controlled trial to pilot evaluates a Cardiac- Diabetes Self-Management program, and the feasibility of incorporating peers in the follow-ups. Results of this study will provide directions for using such mode in delivering a self-management program for patients with both cardiac condition and diabetes. Furthermore, it will provide valuable information of refinement of the intervention program.
Resumo:
Previous studies exploring the incidence and readmission rates of cardiac patients admitted to a coronary care unit (CCU) with type 2 diabetes [1] have been undertaken by the first author. Interviews of these patients regarding their experiences in managing their everyday conditions [2] provided the basis for developing the initial cardiac–diabetes self-management programme (CDSMP) [3]. Findings from each of these previous studies highlighted the complexity of self-management for patients with both conditions and contributed to the creation of a new self-management programme, the CDSMP, based on Bandura’s (2004) self-efficacy theory [4]. From patient and staff feedback received for the CDSMP [3], it became evident that further revision of the programme was needed to improve self-management levels of patients and possibility of incorporating methods of information technology (IT). Little is known about the applicability of different methods of technology for delivering self-management programmes for patients with chronic diseases such as those with type 2 diabetes and cardiac conditions. Although there is some evidence supporting the benefits and the great potential of using IT in supporting self-management programmes, it is not strong, and further research on the use of IT in such programmes is recommended [5–7]. Therefore, this study was designed to pilot test feasibility of the CDSMP incorporating telephone and text-messaging as follow-up approaches.