683 resultados para Plastic film
Resumo:
The paper industry is constantly looking for new ideas for improving paper products while competition and raw material prices are increasing. Many paper products are pigment coated. Coating layer is the top layer of paper, thus by modifying coating pigment also the paper itself can be altered and value added to the final product. In this thesis, synthesis of new plastic and hybrid pigments and their performance in paper and paperboard coating is reported. Two types of plastic pigments were studied: core-shell latexes and solid beads of maleimide copolymers. Core-shell latexes with partially crosslinked hydrophilic polymer core of poly(n-butyl acrylate-co-methacrylic acid) and a hard hydrophobic polystyrene shell were prepared to improve the optical properties of coated paper. In addition, the effect of different crosslinkers was analyzed and the best overall performance was achieved by the use of ethylene glycol dimethacrylate (EGDMA). Furthermore, the possibility to modify core-shell latex was investigated by introducing a new polymerizable optical brightening agent, 1-[(4-vinylphenoxy)methyl]-4-(2-henylethylenyl)benzene which gave promising results. The prepared core-shell latex pigments performed smoothly also in pilot coating and printing trials. The results demonstrated that by optimizing polymer composition, the optical and surface properties of coated paper can be significantly enhanced. The optimal reaction conditions were established for thermal imidization of poly(styrene-co-maleimide) (SMI) and poly(octadecene-co-maleimide) (OMI) from respective maleic anhydride copolymer precursors and ammonia in a solvent free process. The obtained aqueous dispersions of nanoparticle copolymers exhibited glass transition temperatures (Tg) between 140-170ºC and particle sizes from 50-230 nm. Furthermore, the maleimide copolymers were evaluated in paperboard coating as additional pigments. The maleimide copolymer nanoparticles were partly imbedded into the porous coating structure and therefore the full potential of optical property enhancement for paperboard was not achieved by this method. The possibility to modify maleimide copolymers was also studied. Modifications were carried out via N-substitution by replacing part of the ammonia in the imidization reaction with amines, such as triacetonediamine (TAD), aspartic acid (ASP) and fluorinated amines (2,2,2- trifluoroethylamine, TFEA and 2,2,3,3,4,4,4-heptafluorobuthylamine, HFBA). The obtained functional nanoparticles varied in size between 50-217 nm and their Tg from 150-180ºC. During the coating process the produced plastic pigments exhibited good runnability. No significant improvements were achieved in light stability with TAD modified copolymers whereas nanoparticles modified with aspartic acid and those containing fluorinated groups showed the desired changes in surface properties of the coated paperboard. Finally, reports on preliminary studies with organic-inorganic hybrids are presented. The hybrids prepared by an in situ polymerization reaction consisted of 30 wt% poly(styrene- co-maleimide) (SMI) and high levels of 70 wt% inorganic components of kaolin and/or alumina trihydrate. Scanning Electron Microscopy (SEM) images and characterization by Fourier Transform Infrared Spcetroscopy (FTIR) and X-Ray Diffraction (XRD) revealed that the hybrids had conventional composite structure and inorganic components were covered with precipitated SMI nanoparticles attached to the surface via hydrogen bonding. In paper coating, the hybrids had a beneficial effect on increasing gloss levels.
Resumo:
Culture environments, trays and doses of organic compost were evaluated in the formation of cucumber seedlings (Cucumis sativus L.). Five environmental conditions were tested: (A1) a greenhouse with height of 2.5 m, covered with polyethylene film, (A2) nursery with height of 2.5 m, monofilament fabric, 50% shading, (A3) nursery with height of 2.5 m, heat-reflective screen, 50% shading, (A4) nursery with a height of 1.8 m, covered with coconut tree straw and (A5) greenhouse with height of 4.0 m, covered with polyethylene film, with zenith opening and thermo-reflective cloth under the plastic. Trays of 72 (R1) and 128 (R2) cells were filled with 93% soil and 7% organic compound (S1), 86% soil and 14% organic compound (S2) and 79% soil and 21% organic compound (S3). It was used a randomized design in split-split-plot scheme, with five replicates (environments x trays x substrates). The greenhouses provide the best environments for the formation of cucumber seedlings. A tray of 72 cells is the best container, promoting more vigorous seedlings in substrate with soil and 7 or 14% organic compound.
Resumo:
OBJECTIVE: To evaluate the relation of medical research, with the participation of prominent plastic surgeon in Congress.METHODS: We reviewed the scientific programs of the last 3 Brazilian Congress of Surgery, were selected 21 Brazilian plástic surgeons invited to serve as panelists or speakers in roundtable sessions in the last 3 congresses (Group 1). We randomly selected and paired by other members (associates) of the Brazilian Society of Plastic Surgery, with no participation in congress as speaker (Group 2). We conducted a search for articles published in journals indexed in Medline, Lilacs and SciELO for all doctors selected during the entire academic career and the last 5 years from March 2007 until March 2012. We assessed the research activity through the simple counting of the number of publications in indexed journals for each professional. The number of publications groups was compared.RESULTS: articles produced throughout career: Group 1- 639 articles (average of 30.42 items each). Group 2- 79 articles (mean 3.95 articles each). Difference between medias: p <0.001.CONCLUSION: The results demonstrate that the Brazilian Society of Plastic Surgery seeking professionals with a greater number of publications and journals of higher impact. This approach encourages new members to pursue a higher qualification, and give security to congressmen, they can rely on the existence of a technical criterion in the choice of speakers.
Resumo:
Objective: to discuss the participation of Plastic Surgery in the reconstruction of the chest wall, highlighting relevant aspects of interdisciplinaryness. Methods: we analyzed charts from 20 patients who underwent extensive resection of the thoracic integument, between 2000 and 2014, recording the indication of resection, the extent and depth of the raw areas, types of reconstructions performed and complications. Results: among the 20 patients, averaging 55 years old, five were males and 15 females. They resections were: one squamous cell carcinoma, two basal cell carcinomas, five chondrosarcomas and 12 breast tumors. The extent of the bloody areas ranged from 4x9 cm to 25x40 cm. In 12 patients the resection included the muscular plane. In the remaining eight, the tumor removal achieved a total wall thickness. For reconstruction we used: one muscular flap associated with skin grafting, nine flaps and ten regional fasciocutaneous flaps. Two patients undergoing reconstruction with fasciocutaneous flaps had partially suffering of the flap, solved with employment of a myocutaneous flap. The other patients displayed no complications with the techniques used, requiring only one surgery. Conclusion: the proper assessment of local tissues and flaps available for reconstruction, in addition to the successful integration of Plastic Surgery with the specialties involved in the treatment, enable extensive resections of the chest wall and reconstructions that provide patient recovery.
Resumo:
The development of biopolymers has been rapid in recent years and the range of available bioplastics is increasing continuously, driven by a growing demand for sustainable solutions. There are several key drivers behind this growth. The oil reservoirs are decreasing which is causing a price increase for the traditional plastic materials and therefore the gap to bioplastics’ price is getting smaller. In addition, other environmental topics, such as waste disposal and green production, have become more and more important factors for institutes, companies and consumers. Legislation and directives have to be taken into account as well in decision making concerning different packaging materials. The new environmental law with waste disposal responsibility will also have an effect on the packaging business. Therefore a need has risen to study closer the current offering closer of bio-based materials that could be used in chocolate packaging. In this Master’s Thesis the bioplastics’, and especially biodegradable materials’ technical properties and their development, availability, possible existing products in the markets, waste disposal possibilities and consumers attitude towards environmental friendly packaging is studied. This is a case study where the offering of biodegradable materials was investigated during March 2013 for Fazer Confectionary.
Resumo:
This contribution discusses the nonlinear dynamics of a pin-ended elasto-plastic beam with both kinematic and isotropic hardening. An iterative numerical procedure based on the operator split technique is developed in order to deal with the nonlinearities in the equations of motion. Free and forced responses for harmonic sinusoidal and square wave excitations are investigated. Numerical simulations present many interesting behaviors such as jump phenomena, sensitivity to initial conditions, chaos and transient chaos. These results indicate that there are practical problems in predicting the response of the beam even when periodic steady state response is expected.
Resumo:
The objective of this Master´s Thesis was to conduct a wide scale preliminary survey regarding the package requirements of a cultured dairy package, and to compare the currently used material polystyrene to other suitable packaging materials. Polystyrene has a long history of use in dairy cups, but in recent years its price has increased significantly compared to other common packaging materials. The overall environmental effects of a package and a package material are today a part of designing a sustainable product life cycle. In addition, in certain contexts there has been discussion of the risks posed by styrene polymer for the environment and for humans. These risks are also discussed in this thesis. Polystyrene (PS) is still the most widely used material in dairy cups. In recent years, polypropylene (PP) cups have appeared in increasing numbers on market shelves. This study focuses on the differences of the suitable polymers and examines the suitability of alternative “suitable” polymers with regards to dairy packaging. Aside from focusing on the cup manufacturer, this thesis also examines its subject matter from the viewpoint of the dairy customer, as well as observing the concrete implications of material changes in the overall value chain. It was known in advance that material permeability would be one of the determining factors and that gas transmission testing would be a significant part of the thesis. Mechanical tests were the second part of the testing process, providing information regarding package strength and protectiveness during the package’s life cycle. Production efficiency, along with uninterrupted stable production, was another important factor that was taken into consideration. These two issues are sometimes neglected in similar contexts due to their self-evident nature. In addition, materials used in production may have a surprising significance to the production and efficiency. Consistent high quality is also partly based on material selection. All of the aforementioned factors have been documented and the results have been analyzed by the development team at Coveris Rigid Finland. Coveris is now calculating the total finance effects and capacities should the material changes be implemented in practice. There are many factors in favor of switching to polypropylene at the moment. The overall production costs, as well as the environmental effects of resin production are the primary influences for said switch from the converters’ perspective.
Resumo:
Using cellulosic reinforcement to produce plastic composites is a globally growing trend. One of such materials are wood-plastic composites, which are an extensively studied group of materials for which the global industry is looking for new applications. Issues such as bondability, durability and fire resistance still require development to improve the usability of the wood-plastic composite material. Improvement of the usability of wood-plastic composites is studied in this thesis through the effects of using selected modification technology in wood and plastic industry. The applied modification methods are surface by mechanical abrasion and plasma, chemical impregnation of wood flour, and structural modification by the co-extrusion process. The study shows that the properties of WPC can be influenced by the selected modification methods. The selected methods are also found to be able to result as improvement in the properties of the material. The may also affect other than just the targeted properties of the end-product, either in a positive or a negative manner. Therefore modification as performance improvement should be considered as a caseby- case study. Introducing WPC materials for new applications can be done by using modification technology. Structuralmodification can possibly be used to reduce material costs of the modified WPC material.
Resumo:
Background: Controversy exists concerning indications and outcomes of major bariatric surgery procedures. Massive weight loss after bariatric surgery leads to excess skin with functional and aesthetic impairments. The aim of this study was to investigate the major bariatric surgery procedures and their outcomes in two specific subgroups of morbidly obese patients, ≥55-year-olds and the superobese. Further aims were to evaluate whether the preoperative weight loss correlates with laparoscopic gastric bypass complications. The prevalence and impact of excess skin and the desire for body contouring after bariatric surgery were also studied. Patients and Methods: Data from patients who underwent Laparoscopic Adjustable Gastric Banding (LAGB) and Laparoscopic Roux-en-Y Gastric Bypass (LRYGB) at Vaasa Central Hospital were collected and postoperative outcomes were evaluated according to the BMI, age and preoperative weight loss. Patients who had undergone bariatric surgery procedures were asked to complete a questionnaire to estimate any impairment due to redundant skin and to analyse each patient’s desire for body contouring by area. Results: No significant difference was found in operative time, hospital stay, or overall early postoperative morbidity between LAGB and LRYGB. Mean excess weight loss percents (EWL%) at 6 and 12 months after LRYGB were significantly higher. A significant difference was found in operative time favouring patients <55 years. Intraoperative complications were significantly more frequent in the group aged >55 years. No significant difference was detected in overall postoperative morbidity rates. A significant difference was found in operative time and hospital stay favouring all patients who lost weight preoperatively. Most patients reported problems with redundant skin, especially on the abdomen, upper arms and rear/buttocks, which impaired daily physical activity in half of them. Excess skin was significantly associated with female gender, weight loss and ΔBMI. Patients with a WL >20 kg, ΔBMI ≥10 kg/m2 and an EWL % > 50 showed a significantly surplus skin discomfort (p < 0.001). Most patients desired body contouring surgery, with high or very high desire for waist/abdomen (62.2%), upper arm (37.6%), chest/breast (28.3%), and rear/buttock (35.6%) contouring. Conclusions: LRYGB is effective and safe in superobese (BMI >50) and elderly (>55 years) patients. A preoperative weight loss >5% is recommended to improve the outcomes and reduce complications. A WL >20 kg, ΔBMI ≥10 kg/m2 and an EWL % > 50 are associated with a higher functional discomfort due to redundant skin and to a stronger desire for body contouring plastic surgery.
Resumo:
In recent times the packaging industry is finding means to maximize profit. Wood used to be the most advantageous and everyday material for packaging, worktables, counters, constructions, interiors, tools and as materials and utensils in the food companies in the world. The use of wood has declined vigorously, and other materials like plastic, ceramic, stainless steel, concrete, and aluminum have taken its place. One way that the industry could reduce its cost is by finding possibilities of using wood for primary packaging after which it can be safely recycled or burned as a carbon source for energy. Therefore, the main objective of this thesis is to investigate the possibility of press-forming a wood film into primary packaging. In order to achieve the stated objectives, discussion on major characteristics of wood in terms of structure, types and application were studied. Two different wood species, pine and birch were used for the experimental work. These were provided by a local carpentry workshop in Lappeenranta and a workshop in Ruokolahti supervised by Professor Timo Kärki. Laboratory tests were carried out at Lappeenranta University of Technology FMS workshop on Stenhøj EPS40 M hydraulic C-frame press coupled with National Instruments VI Logger and on the Adjustable packaging line machine at LUT Packaging laboratory. The tests succeeded better on the LUT packaging line than on the Stenhoj equipment due to the integrated heating system in the machine. However, there is much work to be done before the quality of a tray produced from the wood film is comparable to that of the wood plastic composite tray.
Resumo:
The mechanical and hygroscopic properties of paper and board are factors affecting the whole lifecycle of a product, including paper/board quality, production, converting, and material and energy savings. The progress of shrinkage profiles, loose edges of web, baggy web causing wrinkling and misregistration in printing are examples of factors affecting runnability and end product quality in the drying section and converting processes, where paper or board is treated as a moving web. The structural properties and internal stresses or plastic strain differences built up during production also cause the end-product defects related to distortion of the shape of the product such as sheet or box. The objective of this work was to construct a model capable of capturing the characteristic behavior of hygroscopic orthotropic material under moisture change, during different external in-plane stretch or stress conditions. Two independent experimental models were constructed: the elasto-plastic material model and the hygroexpansivity-shrinkage model. Both describe the structural properties of the sheet with a fiber orientation probability distribution, and both are functions of the dry solids content and fiber orientation anisotropy index. The anisotropy index, introduced in this work, simplifies the procedure of determining the constitutive parameters of the material model and the hygroexpansion coefficients in different in-plane directions of the orthotropic sheet. The mathematically consistent elasto-plastic material model and the dry solids content dependent hygroexpansivity have been constructed over the entire range from wet to dry. The presented elastoplastic and hygroexpansivity-shrinkage models can be used in an analytical approach to estimate the plastic strain and shrinkage in simple one-dimensional cases. For studies of the combined and more complicated effects of hygro-elasto-plastic behavior, both models were implemented in a finite element program for a numerical solution. The finite element approach also offered possibilities for studying different structural variations of orthotropic planar material, as well as local buckling behavior and internal stress situations of the sheet or web generated by local strain differences. A comparison of the simulation examples presented in this work to results published earlier confirms that the hygro-elasto-plastic model provides at least qualitatively reasonable estimates. The application potential of the hygro-elasto-plastic model is versatile, including several phenomena and defects appearing in the drying, converting and end-use conditions of the paper or board webs and products, or in other corresponding complex planar materials.
Resumo:
This study is a literature review on laser scribing in monolithically interconnected thin-film PV modules, focusing on efficiency of modules based on absorber materials CIGS, CdTe and a-Si. In thin-film PV module manufacturing scribing is used to interconnect individual cells monolithically by P1, P2 and P3 scribes. Laser scribing has several advantages compared to mechanical scribing for this purpose. However, laser scribing of thin-films can be a challenging process and may induce efficiency reducing defects. Some of these defects can be avoided by improving optimisation or processing methods.
Resumo:
The main objective of this thesis is to study the impact of different mineral fillers and fire retardants on the reaction-to-fire properties of extruded/coextruded wood-plastic composites (WPCs). The impact of additives on the flammability properties of WPCs is studied by cone calorimetry. The studied properties are ignition time, peak heat release rate, total heat release, total smoke production, and mass loss rate. The effects of mineral fillers and fire retardants were found to vary with the type of additive, the type of additive combinations, the amount of additives, as well as the production method of the WPCs. The study shows that talc can be used to improve the properties of extruded WPCs. Especially ignition time, peak heat release rate and mass loss rate were found to be improved significantly by talc. The most significant improvement in the fire retardancy of coextruded WPCs was achieved in combinations of natural graphite and melamine. Ignition time, peak heat release rate and total smoke production were improved essentially. High increase in smoke production was found in samples where the amount of ammonium polyphosphate was 10% or higher. Coextrusion as a structural modification was found as a promising way to improve the flammability properties of composite materials in a cost-effective way.
Resumo:
The impact of a recycled mineral wool filler on the various properties of wood plastic composites was studied and the critical factors affecting the formation of the properties were determined. An estimation of the volume of mineral wool fiber waste generated in the European Union between the years 2010-2020 was presented. Furthermore, the effect of fiber pre-treatment on the properties of the wood plastic composites were studied, and the environmental performance of a wood plastic composite containing recycled mineral fibers was assessed. The results showed that the volumes of construction and demolition waste and new mineral wool produced in the European Union are growing annually, and therefore also the volumes of recycled mineral wool waste generated are increasing. The study showed that the addition of recycled mineral wool into composites can enhance some of the mechanical properties and increase the moisture resistance properties of the composites notably. Recycled mineral wool as a filler in wood plastic composites can also improve the fire resistance properties of composites, but it does not protect the polymer matrix from pyrolysis. Fiber pre-treatment with silane solution improved some of the mechanical properties, but generally the use of maleated polypropylene as the coupling agent led to better mechanical and moisture resistance properties. The environmental performance of recycled mineral wool as the filler in wood plastic composites was superior compared to glass fibers. According to the findings, recycled mineral wool fibers can provide a technically and environmentally viable alternative to the traditional inorganic filler materials used in wood plastic composites.