997 resultados para Plant sample
Resumo:
One of the most important advantages of database systems is that the underlying mathematics is rich enough to specify very complex operations with a small number of statements in the database language. This research covers an aspect of biological informatics that is the marriage of information technology and biology, involving the study of real-world phenomena using virtual plants derived from L-systems simulation. L-systems were introduced by Aristid Lindenmayer as a mathematical model of multicellular organisms. Not much consideration has been given to the problem of persistent storage for these simulations. Current procedures for querying data generated by L-systems for scientific experiments, simulations and measurements are also inadequate. To address these problems the research in this paper presents a generic process for data-modeling tools (L-DBM) between L-systems and database systems. This paper shows how L-system productions can be generically and automatically represented in database schemas and how a database can be populated from the L-system strings. This paper further describes the idea of pre-computing recursive structures in the data into derived attributes using compiler generation. A method to allow a correspondence between biologists' terms and compiler-generated terms in a biologist computing environment is supplied. Once the L-DBM gets any specific L-systems productions and its declarations, it can generate the specific schema for both simple correspondence terminology and also complex recursive structure data attributes and relationships.
Resumo:
Chlorophyll fluorescence measurements have a wide range of applications from basic understanding of photosynthesis functioning to plant environmental stress responses and direct assessments of plant health. The measured signal is the fluorescence intensity (expressed in relative units) and the most meaningful data are derived from the time dependent increase in fluorescence intensity achieved upon application of continuous bright light to a previously dark adapted sample. The fluorescence response changes over time and is termed the Kautsky curve or chlorophyll fluorescence transient. Recently, Strasser and Strasser (1995) formulated a group of fluorescence parameters, called the JIP-test, that quantify the stepwise flow of energy through Photosystem II, using input data from the fluorescence transient. The purpose of this study was to establish relationships between the biochemical reactions occurring in PS II and specific JIP-test parameters. This was approached using isolated systems that facilitated the addition of modifying agents, a PS II electron transport inhibitor, an electron acceptor and an uncoupler, whose effects on PS II activity are well documented in the literature. The alteration to PS II activity caused by each of these compounds could then be monitored through the JIP-test parameters and compared and contrasted with the literature. The known alteration in PS II activity of Chenopodium album atrazine resistant and sensitive biotypes was also used to gauge the effectiveness and sensitivity of the JIP-test. The information gained from the in vitro study was successfully applied to an in situ study. This is the first in a series of four papers. It shows that the trapping parameters of the JIP-test were most affected by illumination and that the reduction in trapping had a run-on effect to inhibit electron transport. When irradiance exposure proceeded to photoinhibition, the electron transport probability parameter was greatly reduced and dissipation significantly increased. These results illustrate the advantage of monitoring a number of fluorescence parameters over the use of just one, which is often the case when the F-V/F-M ratio is used.
Resumo:
Functional genomics is the systematic study of genome-wide effects of gene expression on organism growth and development with the ultimate aim of understanding how networks of genes influence traits. Here, we use a dynamic biophysical cropping systems model (APSIM-Sorg) to generate a state space of genotype performance based on 15 genes controlling four adaptive traits and then search this spice using a quantitative genetics model of a plant breeding program (QU-GENE) to simulate recurrent selection. Complex epistatic and gene X environment effects were generated for yield even though gene action at the trait level had been defined as simple additive effects. Given alternative breeding strategies that restricted either the cultivar maturity type or the drought environment type, the positive (+) alleles for 15 genes associated with the four adaptive traits were accumulated at different rates over cycles of selection. While early maturing genotypes were favored in the Severe-Terminal drought environment type, late genotypes were favored in the Mild-Terminal and Midseason drought environment types. In the Severe-Terminal environment, there was an interaction of the stay-green (SG) trait with other traits: Selection for + alleles of the SG genes was delayed until + alleles for genes associated with the transpiration efficiency and osmotic adjustment traits had been fixed. Given limitations in our current understanding of trait interaction and genetic control, the results are not conclusive. However, they demonstrate how the per se complexity of gene X gene X environment interactions will challenge the application of genomics and marker-assisted selection in crop improvement for dryland adaptation.
Resumo:
This paper describes a process-based metapopulation dynamics and phenology model of prickly acacia, Acacia nilotica, an invasive alien species in Australia. The model, SPAnDX, describes the interactions between riparian and upland sub-populations of A. nilotica within livestock paddocks, including the effects of extrinsic factors such as temperature, soil moisture availability and atmospheric concentrations of carbon dioxide. The model includes the effects of management events such as changing the livestock species or stocking rate, applying fire, and herbicide application. The predicted population behaviour of A. nilotica was sensitive to climate. Using 35 years daily weather datasets for five representative sites spanning the range of conditions that A. nilotica is found in Australia, the model predicted biomass levels that closely accord with expected values at each site. SPAnDX can be used as a decision-support tool in integrated weed management, and to explore the sensitivity of cultural management practices to climate change throughout the range of A. nilotica. The cohort-based DYMEX modelling package used to build and run SPAnDX provided several advantages over more traditional population modelling approaches (e.g. an appropriate specific formalism (discrete time, cohort-based, process-oriented), user-friendly graphical environment, extensible library of reusable components, and useful and flexible input/output support framework). (C) 2003 Published by Elsevier Science B.V.
Resumo:
Fungal diseases are important factors limiting common bean yield. White mold is one of the main diseases caused by soil pathogens. The objective of this study was to quantify the distribution of a fungicide solution sprayed into the canopy of bean plants by spectrophotometry, using a boom sprayer with and without air assistance. The experiment was arranged in a 2 x 2 x 2 factorial (two types of nozzles, two application rates, and air assistance on and off) randomized block design with four replications. Air assistance influenced the deposition of solution on the bean plant and yield increased significantly with the increased rate of application and air assistance in the boom sprayer.
Resumo:
Differences in levels of lignin in the plant between conventional and transgenic cultivars RR has been reported by several authors, however, there are few studies evaluating the influence of spraying of glyphosate on the lignin in the plant and RR soybean seeds. The aim of this study was to evaluate the physiological quality of RR transgenic soybean seeds and the lignin contents of plants sprayed with the herbicide glyphosate. The assays were conducted both in greenhouse and field in the municipality of Lavras, MG, in the agricultural year 2007/08. The experiment was arranged in a splitplot design with four replicates, considering the treatments hand weeding and herbicide glyphosate as plots, and five RR soybean cultivars (BRS 245 RR, BRS 247 RR, Valiosa RR, Silvânia RR and Baliza RR) as splitplots. In the greenhouse, the cultivars tested were BRS 245 RR and Valiosa RR in a randomized block design with four replicates. The sprayings were carried out at stages V3, V7 and early R5 (3L/ha). The 1000 seed weight, mechanical injury, germination and germination velocity index, emergence velocity index, accelerated aging, electrical conductivity and water soaking seed test, lignin content in the seed coat, in the stem and legumes were determined. The spraying of glyphosate herbicide, in greenhouse and field, did not alter the physiological quality of seeds and the lignin contents in the plant.
Resumo:
The objective of the present work was to evaluate 27 progenies of cocoa crosses considering the agronomic traits and select F1 plants within superior crosses. The experiment was installed in March 2005, in the Experimental Station Joaquim Bahiana (ESJOB), in Itajuipe, Bahia. The area of the experiment is of approximately 3 ha, with a total of 3240 plants. Thirteen evaluations of vegetative brooms, five of cushion brooms and 15 of number of pods per plant were accomplished. Thirty pollinations were made for each selected plant to test for self-compatibility. The production, based on the number of pods per plant, and resistance to witches´ broom indicated CEPEC 94 x CCN 10, RB 39 x CCN 51 and CCN 10 x VB 1151 as superior progenies. All selections tested were self-compatible. The analyses of progenies and individual tree data, associated to visual field observations, allowed the selection of 17 plants which were included in a network of regional tests to determine the phenotypic stability.
Resumo:
Heavy metals can accumulate in soil and cause phytotoxicity in plants with some specific symptoms. The present study evaluated the specific symptoms on rice and soybeans plants caused by excess of heavy metals in soil. Rice and soybean were grown in pots containing soil with different levels of heavy metals. A completely randomized design was used, with four replications, using two crop species and seven sample soils with different contamination levels. Rice and soybean exhibited different responses to the high concentrations of heavy metals in the soil. Rice plants accumulated higher Cu, Mn, Pb and Zn concentrations and were more sensitive to high concentrations of these elements in the soil, absorbing them more easily compared to the soybean plants. However, high available Zn concentrations in the soil caused phytotoxicity symptoms in rice and soybean, mainly chlorosis and inhibited plant growth. Further, high Zn concentrations in the soil reduced the Fe concentration in the shoots of soybean and rice plants to levels considered deficient.
Resumo:
All essential nutrients can affect the incidence and severity of plant diseases. Although silicon (Si) is not considered as an essential nutrient for plants, it stands out for its potential to decrease disease intensity in many crops. The mechanism of Si action in plant resistance is still unclear. Si deposition in plant cell walls raised the hypothesis of a possible physical barrier to pathogen penetration. However, the increased activity of phenolic compounds, polyphenol oxidases and peroxidases in plants treated with Si demonstrates the involvement of this element in the induction of plant defense responses. The studies examined in this review address the role of Si in disease control and the possible mechanisms involved in the mode of Si action in disease resistance in plants.
Resumo:
ABSTRACT Sorghum arundinaceum (Desv.) Stapf is a weed that belongs to the Poaceae family and is widespread throughout Brazil. Despite the frequent occurrence, infesting cultivated areas, there is little research concerning the biology and physiology of this species. The objective of this research was to evaluate the growth, carbon partitioning and physiological characteristics of the weed Sorghum arundinaceum in greenhouse. Plants were collected at regular intervals of seven days, from 22 to 113 days after transplanting (DAT). In each sample, we determined plant height, root volume, leaf area and dry matter, and subsequently we perfomed the growth analysis, we have determined the dry matter partitioning among organs, the accumulation of dry matter, the specific leaf area, the relative growth rate and leaf weight ratio. At 36, 78 and 113 DAT, the photosynthetic and transpiration rates, stomatal conductance, CO2 concentration and chlorophyll fluorescence were evaluated. The Sorghum arundinaceum reached 1.91 in height, with slow initial growth and allocated much of the biomass in the roots. The photosynthetic rate and the maximum quantum yield of FSII are similar throughout the growth cycle. At maturity the Sorghum arundinaceum presents higher values of transpiration rate, stomatal conductance and non-photochemical quenching coefficient (NPQ).
Resumo:
ABSTRACT The objective of this study was to analyze the phenotypic correlation and path analysis of traits related to plant architecture, earliness and grain yield in F2, BC1 and BC2 generations, from crosses between cowpea cultivars BRS Carijó and BR14 Mulato. Most phenotypic correlations of the examined traits were concordant in statistical significance, with approximate values among the examined generations. For the trait seed weight, significant and positive phenotypic correlations were observed in the three generations only for the trait number of secondary branches. The values of the direct effects were in agreement with the values of the phenotypic correlations, which indicate true association by the phenotypic correlation among the traits of grain yield examined. Path analysis indicated that the selection of productive plants will result in early plants and an increased number of secondary branches. In F2, plants with shorter length of the main branch and shorter length of secondary branches can be obtained. The causal model explained 15 to 30% of the total variation in grain weight in relation to the traits examined. The analyses indicated the possibility of selecting plants with a higher and early grain yield, shorter length of primary branches and lower number of nodes, which are important variables for mechanical or semi-mechanical harvesting.
Resumo:
ABSTRACT The objective of the present study was to evaluate the effect of nitrogen doses applied via fertigation and associated with different types of crop establishment fertilization on growth and biomass of radish. The experiment was conducted in a greenhouse of the Academic Unit of Agricultural Engineering, Federal University of Campina Grande, from April to May 2014. Treatments consisted of five doses of nitrogen fertilizer applied by fertigation (0, 0.7, 1.4, 2.1 and 2.8g per pot) and three types of crop establishment fertilization (humus 2:2; NPK and control), arranged in a 5 x 3 factor design with four repetitions. The 15 treatments were arranged in 60 plots. The nitrogen source used in the study was urea, divided in three applications: the first application was carried out eight days after transplanting, the second, on day 15, and the third, on day 22. The crop establishment fertilization significantly influenced the growth variables and plant mass of the radish on day 35 after transplanting. The highest values of the variables (number of leaves, plant height, bulb diameter, leaf area, fresh mass of the aerial part, dry mass of the aerial part and root/aerial part were observed in the treatment with humus on day 35 after transplanting. The dose of 2.8g nitrogen per pot corresponding to 6.22g of urea per plant provided the highest yield for the variable number of leafs, leaf area and root length on day 35 after transplanting.
Resumo:
ABSTRACT Biostimulants are complex substances that promote hormonal balance in plants, favor the genetic potential expression, and enhance growth of shoots and root system. The use of these plant growth promoters in crops can increase quantitatively and qualitatively crop production. Therefore, the aim of this study was to evaluate the effect of a commercial biostimulant on the initial growth of cassava. The experiment was arranged in a 2 x 5 factorial design, corresponding to two cassava cultivars (Cacau-UFV and Coimbra) and five biostimulant concentrations (0, 4, 8, 12 and 16 mL L-1). At 90 days after planting, the characteristics leaf area, plant height, stem diameter, leaf number, total dry matter and dry matter of roots, stems and leaves were evaluated. The biostimulant promoted linear increases in plant height, leaf number, leaf area, total dry matter, dry matter of stems, leaves and roots. The cultivar Cacau-UFV had a higher growth rate than the cultivar Coimbra. The growth promoter stimulated the early growth of the cassava crop.