956 resultados para Plant genome mapping


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A preliminary radiation hybrid (RH) map containing 50 loci on chromosome 7 of the domestic river buffalo Bubalus bubalis (BBU; 2n = 50) was constructed based on a comparative mapping approach. The RH map of BBU7 includes thirty-seven gene markers and thirteen microsatellites. All loci have been previously assigned to Bos taurus (BTA) chromosome BTA6, which is known for its association with several economically important milk production traits in cattle. The map consists of two linkage groups spanning a total length of 627.9 cR(5,000). Comparative analysis of the BBU7 RH 5,000 map with BTA6 in cattle gave new evidence for strong similarity between the two chromosomes over their entire length and exposed minor differences in locus order. Comparison of the BBU7 RH 5,000 map with the Homo sapiens (HSA) genome revealed similarity with a large chromosome segment of HSA4. Comparative analysis of loci in both species revealed more variability than previously known in gene order and several chromosome rearrangements including centromere relocation. The data obtained in our study define the evolutionarily conserved segment on BBU7 and HSA4 to be between 3.5 megabases (Mb) and 115.8 Mb in the HSA4 (genome build 36) DNA sequence. Copyright (c) 2008 S. Karger AG, Basel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The major histocompatibility complex (MHC) contains a set of genes necessary for antigen presentation in the immune system. This gene dense and polymorphic region of the mammalian genome is of considerable interest due to the role of MHC genes in immune function and animal health. Previous cytogenetic studies have indicated that the MHC in river buffalo resides on the short arm of chromosome 2 (BBU2). A 5000-rad radiation hybrid mapping panel was recently generated to enable construction of a whole genome map of river buffalo. To this and, the aims of this project were to elucidate the general organization of the MHC on BBU2, and to compare gene order within this region to the MHC in cattle. PCR primers were selected from the bovine gene map and used with the BBURH(5000) panel to map a set of ten MHC class 11 genes in river buffalo. Analysis indicates that these genes fall into two linkage groups, consistent with organization of the MHC in cattle. This comparison of buffalo and bovine MHC gene order provides the first insight into the organization of the MHC on river buffalo chromosome 2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review deals with a comparative analysis of seven genome sequences from plant-associated bacteria. These are the genomes of Agrobacterium tumefaciens, Mesorhizobium loti, Sinorhizobium meliloti, Xanthomonas campestris pv campestris, Xanthomonas axonopodis pv citri, Xylella fastidiosa, and Ralstonia solanacearum. Genome structure and the metabolism pathways available highlight the compromise between the genome size and lifestyle. Despite the recognized importance of the type III secretion system in controlling host compatibility, its presence is not universal in all necrogenic pathogens. Hemolysins, hemagglutinins, and some adhesins, previously reported only for mammalian pathogens, are present in most organisms discussed. Different numbers and combinations of cell wall degrading enzymes and genes to overcome the oxidative burst generally induced by the plant host are characterized in these genomes. A total of 19 genes not involved in housekeeping functions were found common to all these bacteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aluminum toxicity is one of the major constraints for plant development in acid soils, limiting food production in many countries. Cultivars genetically adapted to acid soils may offer an environmental compatible solution, providing a sustainable agriculture system. The aim of this work was to identify genomic regions associated with Al tolerance in maize, and to quantify the genetic effects on the phenotypic variation. A population of 168 F-3:4 families derived from a cross between two contrasting maize inbred lines for Al tolerance was evaluated using the NSRL and RSRL parameters in nutrient solution containing toxic level of aluminum. Variance analyses indicated that the NSRL was the most reliable phenotypic index to measure Al tolerance in the population, being used for further QTL mapping analysis. RFLP and SSR markers were selected for bulked segregant analysis, and additional SSR markers, flanking the polymorphisms of interest, were chosen in order to saturate the putative target regions. Seven linkage groups were constructed using 17 RFLP and 34 SSR markers. Five QTLs were mapped on chromosomes 2, 6 and 8, explaining 60% of the phenotypic variation. QTL(4) and marker umc043 were located on chromosomes 8 and 5, close to genes encoding for enzymes involved in the organic acids synthesis pathways, a widely proposed mechanism for Al tolerance in plants. QTL(2) was mapped in the same region as Alm2, also associated with Al tolerance in maize. In addition, dominant and additive effects were important in the control of this trait in maize.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Xylella fastidiosa is a xylem-dwelling, insect-transmitted, gamma-proteobacterium that causes diseases in many plants, including grapevine, citrus, periwinkle, almond, oleander, and coffee. X. fastidiosa has an unusually broad host range, has an extensive geographical distribution throughout the American continent, and induces diverse disease phenotypes. Previous molecular analyses indicated three distinct groups of X.fastidiosa isolates that were expected to be genetically divergent. Here we report the genome sequence of X. fastidiosa (Temecula strain), isolated from a naturally infected grapevine with Pierce's disease (PD) in a wine-grape-growing region of California. Comparative analyses with a previously sequenced X.fastidiosa strain responsible for citrus variegated chlorosis (CVC) revealed that 98% of the PD X.fastidiosa Temecula genes are shared with the CVC X. fastidiosa strain 9a5c genes. Furthermore, the average amino acid identity of the open reading frames in the strains is 95.7%. Genomic differences are limited to phage-associated chromosomal rearrangements and deletions that also account for the strain-specific genes present in each genome. Genomic islands, one in each genome, were identified, and their presence in other X.fastidiosa strains was analyzed. We conclude that these two organisms have identical metabolic functions and are likely to use a common set of genes in plant colonization and pathogenesis, permitting convergence of functional genomic strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coagulation factor IX gene (179), the hypoxanthine phosphoribosyl transferase 1 gene (HPRT1), and the X-inactive specific transcript gene (XIST) were physically assigned in cattle to analyze chromosomal breakpoints on BTAX recently identified by radiation hybrid (RH) mapping experiments. Whereas the FISH assignment of XIST indicates a similar location on the q-arm of the human and cattle X chromosomes, the locus of HPRT1 supported the assumption of a chromosome rearrangement between the distal half of the q-arm of HSAX and the p-arm of BTAX identified by RH mapping. F9 previously located on the Cl-arm of BTAX was assigned to the p-arm of BTAX using RH mapping and FISH. The suggested new position of F9 close to HPRT I supports the homology between HSAXq and BTAXp. The F9 locus corresponds with the gene order found in the homologous human chromosome segment. XIST was assigned on BTAXq23, HPRT1 and F9 were mapped to BTAXp22, and the verification of the location of F9 in a 5000 rad cattle-hamster whole genome radiation hybrid panel linked the gene to markers URB10 and HPRT1. Copyright (C) 2003 S. Karger AG, Basel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Xylella fastidiosa causes citrus variegated chlorosis (CVC). Information generated from the X. fastidiosa genome project is being used to study the underlying mechanisms responsible for pathogenicity. However, the lack of an experimental host other than citrus to study plant-X. fastidiosa interaction has been an obstacle to accelerated progress in this area. We present here results of three experiments that demonstrated that tobacco could be an important experimental host for X. fastidiosa. All tobacco plants inoculated with a citrus strain of X. fastidiosa expressed unequivocal symptoms, consisting of orange leaf lesions, approximately 2 months after injection of the pathogen. CVC symptoms were observed in citrus 3 to 6 months after inoculation. The pathogen was readily detected in symptomatic tobacco plants by polymerase chain reaction (PCR) and phase contrast microscopy. In addition, X. fastidiosa was reisolated on agar plates in 4 of 10 plants. Scanning electron microscopy analysis of cross sections of stems and petioles revealed the presence of rod shaped bacteria restricted to the xylem of inoculated plants. The cell size was within the limit typical of X. fastidiosa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genome sequence of Leifsonia xyli subsp. xyli, which causes ratoon stunting disease and affects sugarcane worldwide, was determined. The single circular chromosome of Leifsonia xyli subsp. xyli CTCB07 was 2.6 Mb in length with a GC content of 68% and 2,044 predicted open reading frames. The analysis also revealed 307 predicted pseudogenes, which is more than any bacterial plant pathogen sequenced to date. Many of these pseudogenes, if functional, would likely be involved in the degradation of plant heteropolysaccharides, uptake of free sugars, and synthesis of amino acids. Although L. xyli subsp. xyli has only been identified colonizing the xylem vessels of sugarcane, the numbers of predicted regulatory genes and sugar transporters are similar to those in free-living organisms. Some of the predicted pathogenicity genes appear to have been acquired by lateral transfer and include genes for cellulase, pectinase, wilt-inducing protein, lysozyme, and desaturase. The presence of the latter may contribute to stunting, since it is likely involved in the synthesis of abscisic acid, a hormone that arrests growth. Our findings are consistent with the nutritionally fastidious behavior exhibited by L. xyli subsp. xyli and suggest an ongoing adaptation to the restricted ecological niche it inhabits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The simultaneous existence of alternative oxidases and uncoupling proteins in plants has raised the question as to why plants need two energy-dissipating systems with apparently similar physiological functions. A probably complete plant uncoupling protein gene family is described and the expression profiles of this family compared with the multigene family of alternative oxidases in Arabidopsis thaliana and sugarcane (Saccharum sp.) employed as dicot and monocot models, respectively. In total, six uncoupling protein genes, AtPUMP1-6, were recognized within the Arabidopsis genome and five (SsPUMP1-5) in a sugarcane EST database. The recombinant AtPUMP5 protein displayed similar biochemical properties as AtPUMP1. Sugarcane possessed four Arabidopsis AOx1-type orthologues (SsAOx1a-1d); no sugarcane orthologue corresponding to Arabidopsis AOx2-type genes was identified. Phylogenetic and expression analyses suggested that AtAOx1d does not belong to the AOx1-type family but forms a new (AOx3-type) family. Tissue-enriched expression profiling revealed that uncoupling protein genes were expressed more ubiquitously than the alternative oxidase genes. Distinct expression patterns among gene family members were observed between monocots and dicots and during chilling stress. These findings suggest that the members of each energy-dissipating system are subject to different cell or tissue/organ transcriptional regulation. As a result, plants may respond more flexibly to adverse biotic and abiotic conditions, in which oxidative stress is involved. © The Author [2006]. Published by Oxford University Press [on behalf of the Society for Experimental Biology]. All rights reserved.