890 resultados para Planning Decision Support System
Resumo:
Aim: To explore current risk assessment processes in general practice and Improving Access to Psychological Therapies (IAPT) services, and to consider whether the Galatean Risk and Safety Tool (GRiST) can help support improved patient care. Background: Much has been written about risk assessment practice in secondary mental health care, but little is known about how it is undertaken at the beginning of patients' care pathways, within general practice and IAPT services. Methods: Interviews with eight general practice and eight IAPT clinicians from two primary care trusts in the West Midlands, UK, and eight service users from the same region. Interviews explored current practice and participants' views and experiences of mental health risk assessment. Two focus groups were also carried out, one with general practice and one with IAPT clinicians, to review interview findings and to elicit views about GRiST from a demonstration of its functionality. Data were analysed using thematic analysis. Findings Variable approaches to mental health risk assessment were observed. Clinicians were anxious that important risk information was being missed, and risk communication was undermined. Patients felt uninvolved in the process, and both clinicians and patients expressed anxiety about risk assessment skills. Clinicians were positive about the potential for GRiST to provide solutions to these problems. Conclusions: A more structured and systematic approach to risk assessment in general practice and IAPT services is needed, to ensure important risk information is captured and communicated across the care pathway. GRiST has the functionality to support this aspect of practice.
Resumo:
An approach of building distributed decision support systems is proposed. There is defined a framework of a distributed DSS and examined questions of problem formulation and solving using artificial intellectual agents in system core.
Resumo:
This paper presents the application of Networks of Evolutionary Processors to Decision Support Systems, precisely Knowledge-Driven DSS. Symbolic information and rule-based behavior in Networks of Evolutionary Processors turn out to be a great tool to obtain decisions based on objects present in the network. The non-deterministic and massive parallel way of operation results in NP-problem solving in linear time. A working NEP example is shown.
Resumo:
This paper aims at development of procedures and algorithms for application of artificial intelligence tools to acquire process and analyze various types of knowledge. The proposed environment integrates techniques of knowledge and decision process modeling such as neural networks and fuzzy logic-based reasoning methods. The problem of an identification of complex processes with the use of neuro-fuzzy systems is solved. The proposed classifier has been successfully applied for building one decision support systems for solving managerial problem.
Resumo:
Methods of analogous reasoning and case-based reasoning for intelligent decision support systems are considered. Special attention is drawn to methods based on a structural analogy that take the context into account. This work was supported by RFBR (projects 02-07-90042, 05-07-90232).
Resumo:
Development of methods and tools for modeling human reasoning (common sense reasoning) by analogy in intelligent decision support systems is considered. Special attention is drawn to modeling reasoning by structural analogy taking the context into account. The possibility of estimating the obtained analogies taking into account the context is studied. This work was supported by RFBR.
Resumo:
The evaluation of geospatial data quality and trustworthiness presents a major challenge to geospatial data users when making a dataset selection decision. The research presented here therefore focused on defining and developing a GEO label – a decision support mechanism to assist data users in efficient and effective geospatial dataset selection on the basis of quality, trustworthiness and fitness for use. This thesis thus presents six phases of research and development conducted to: (a) identify the informational aspects upon which users rely when assessing geospatial dataset quality and trustworthiness; (2) elicit initial user views on the GEO label role in supporting dataset comparison and selection; (3) evaluate prototype label visualisations; (4) develop a Web service to support GEO label generation; (5) develop a prototype GEO label-based dataset discovery and intercomparison decision support tool; and (6) evaluate the prototype tool in a controlled human-subject study. The results of the studies revealed, and subsequently confirmed, eight geospatial data informational aspects that were considered important by users when evaluating geospatial dataset quality and trustworthiness, namely: producer information, producer comments, lineage information, compliance with standards, quantitative quality information, user feedback, expert reviews, and citations information. Following an iterative user-centred design (UCD) approach, it was established that the GEO label should visually summarise availability and allow interrogation of these key informational aspects. A Web service was developed to support generation of dynamic GEO label representations and integrated into a number of real-world GIS applications. The service was also utilised in the development of the GEO LINC tool – a GEO label-based dataset discovery and intercomparison decision support tool. The results of the final evaluation study indicated that (a) the GEO label effectively communicates the availability of dataset quality and trustworthiness information and (b) GEO LINC successfully facilitates ‘at a glance’ dataset intercomparison and fitness for purpose-based dataset selection.
Resumo:
Constant increase of human population result in more and more people living in emergency dangerous regions. In order to protect them from possible emergencies we need effective solution for decision taking in case of emergencies, because lack of time for taking decision and possible lack of data. One among possible methods of taking such decisions is shown in this article.
Resumo:
This special issue of International Journal of Production Research provides a platform for sharing the knowledge base, recent research outputs and a review of recent developments highlighting the critical aspects of green manufacturing supply chain design and operations decision support. The special issue includes 15 contributions presenting new and significant research in the relevant area. Contributions mainly present either a novel green/sustainable manufacturing supply chain design and operations decision support approach applied to a problem, or a state-of-the-art method on green/sustainable factors in supply chain design and operations. The article delineates an overview of the contributions and their significance, and an introspection on the ‘green’ factors involved.
Resumo:
Clinical decision support systems (CDSSs) often base their knowledge and advice on human expertise. Knowledge representation needs to be in a format that can be easily understood by human users as well as supporting ongoing knowledge engineering, including evolution and consistency of knowledge. This paper reports on the development of an ontology specification for managing knowledge engineering in a CDSS for assessing and managing risks associated with mental-health problems. The Galatean Risk and Safety Tool, GRiST, represents mental-health expertise in the form of a psychological model of classification. The hierarchical structure was directly represented in the machine using an XML document. Functionality of the model and knowledge management were controlled using attributes in the XML nodes, with an accompanying paper manual for specifying how end-user tools should behave when interfacing with the XML. This paper explains the advantages of using the web-ontology language, OWL, as the specification, details some of the issues and problems encountered in translating the psychological model to OWL, and shows how OWL benefits knowledge engineering. The conclusions are that OWL can have an important role in managing complex knowledge domains for systems based on human expertise without impeding the end-users' understanding of the knowledge base. The generic classification model underpinning GRiST makes it applicable to many decision domains and the accompanying OWL specification facilitates its implementation.
Resumo:
Objectives: To develop a decision support system (DSS), myGRaCE, that integrates service user (SU) and practitioner expertise about mental health and associated risks of suicide, self-harm, harm to others, self-neglect, and vulnerability. The intention is to help SUs assess and manage their own mental health collaboratively with practitioners. Methods: An iterative process involving interviews, focus groups, and agile software development with 115 SUs, to elicit and implement myGRaCE requirements. Results: Findings highlight shared understanding of mental health risk between SUs and practitioners that can be integrated within a single model. However, important differences were revealed in SUs' preferred process of assessing risks and safety, which are reflected in the distinctive interface, navigation, tool functionality and language developed for myGRaCE. A challenge was how to provide flexible access without overwhelming and confusing users. Conclusion: The methods show that practitioner expertise can be reformulated in a format that simultaneously captures SU expertise, to provide a tool highly valued by SUs. A stepped process adds necessary structure to the assessment, each step with its own feedback and guidance. Practice Implications: The GRiST web-based DSS (www.egrist.org) links and integrates myGRaCE self-assessments with GRiST practitioner assessments for supporting collaborative and self-managed healthcare.
Resumo:
Industry practitioners are seeking to create optimal logistics networks through more efficient decision-making leading to a shift of power from a centralized position to a more decentralized approach. This has led to researchers, exploring with vigor, the application of agent based modeling (ABM) in supply chains and more recently, its impact on decision-making. This paper investigates reasons for the shift to decentralized decision-making and the impact on supply chains. Effective decentralization of decision-making with ABM and hybrid modeling is investigated, observing the methods and potential of achieving optimality.
Resumo:
The breadth and depth of available clinico-genomic information, present an enormous opportunity for improving our ability to study disease mechanisms and meet the individualised medicine needs. A difficulty occurs when the results are to be transferred 'from bench to bedside'. Diversity of methods is one of the causes, but the most critical one relates to our inability to share and jointly exploit data and tools. This paper presents a perspective on current state-of-the-art in the analysis of clinico-genomic data and its relevance to medical decision support. It is an attempt to investigate the issues related to data and knowledge integration. Copyright © 2010 Inderscience Enterprises Ltd.
Resumo:
Tanulmányunkban a hazai vállalatok teljesítménymérési és teljesítménymenedzsment gyakorlatát vizsgáljuk a Versenyben a világgal kutatási program adatainak felhasználásával. Célunk a döntéstámogatás hátterének vizsgálata: a vállalatok teljesítménymérési gyakorlatának jellemzése, konzisztenciájának értékelése, vizsgálva a korábbi kutatásaink során megfigyelt tendenciák további alakulását is. A vállalatvezetők által fontosnak/hasznosnak tartott, illetve rendszeresen használt információforrásokat, teljesítménymutatókat, elemzési eszközöket a korábbi kutatásainkhoz kialakított elemzési keret (orientáció, egyensúly, konzisztencia, támogató szerep) felhasználásával értékeltük. Az információs rendszer különböző tevékenységeket támogató szerepének az értékelése során a különböző területekért felelős vezetők véleményét is összevetettük, s különböző vállalatcsoportok sajátosságait is vizsgáltuk. --------- The paper analyses the performance measurement and performance management practice of Hungarian companies, based on data of the Competitiveness research program. Our goal was to evaluate the practice from the point of view of decision support, based on our previous framework, evaluating the orientation, the balance, the consistency and the supporting role of the performance measurement practice.
Resumo:
Incomplete pairwise comparison matrix was introduced by Harker in 1987 for the case in which the decision maker does not fill in the whole matrix completely due to, e.g., time limitations. However, incomplete matrices occur in a natural way even if the decision maker provides a completely filled in matrix in the end. In each step of the total n(n–1)/2, an incomplete pairwise comparison is given, except for the last one where the matrix turns into complete. Recent results on incomplete matrices make it possible to estimate inconsistency indices CR and CM by the computation of tight lower bounds in each step of the filling in process. Additional information on ordinal inconsistency is also provided. Results can be applied in any decision support system based on pairwise comparison matrices. The decision maker gets an immediate feedback in case of mistypes, possibly causing a high level of inconsistency.