340 resultados para Pion
Resumo:
O diagnóstico precoce de focos de infecção dentários é de fundamental importância para prevenir a ocorrência de maiores injúrias locais ou sistêmicas. Dentre os diversos métodos utilizados para complementar os achados radiológicos das alterações dentoalveolares surge uma alternativa: a cintilografia tomográfica (SPECT/CT), que permite a fusão de achados morfológicos com alterações metabólicas. Com o objetivo de estabelecer o diagnóstico precoce e acurado de processos infecciosos dentários, foram estudadas 320 áreas dentárias em mandíbula e maxila em (10 pacientes de ambos os sexos selecionados por meio de exames clínicos e radiológicos convencionais, seguidos de cintilografia tomográfica com e sem aparato blindador de raios gama. Os exames cintilográficos foram realizados no Serviço de Medicina Nuclear do Hospital Israelita Albert Einstein (HIAE). Para isso, foi administrado para cada paciente o radiofármaco tecnécio 99- metilenodifosfonato (99mTc-MDP) via endovenosa com a dose de 37mBq/3Kg de peso corporal do paciente. Após o período de acúmulo de três horas, foi realizado o protocolo de aquisição de imagens. Todas as imagens foram analisadas por um médico nuclear e um endodontista, com experiência em cintilografia tomográfica. O resultado obtido por meio do exame radiográfico intrabucal pela técnica periapical digital mostraram 6 imagens positivas, em um total de 1,87% da amostra; exame do mapeamento cintilográfico dos ossos da face com a utilização do blindador de raios gâma revelou 9 imagens positivas, correspondendo a 2,81% do total de áreas estudadas, havendo diferença estatisticamente significante ao nível de 95% pelo teste qui-quadrado. Pode-se concluir que o SPECT/CT permitiu identificar as alterações periapicais em maior número quando comparadas ao exame radiográfico periapical e ao mapeamento cintilográfico dos ossos da face com a utilização do blindador de raios gama; o exame de SPCET/CT além de mostrar imagens mais detalhadas, permitiu também localizar com exatidão as áreas alteradas.
Resumo:
IMB (Irvine, Michigan, Brookline), a collaboration between the University of Michigan, the University of California at Irvine, and the U.S. Department of Energy, was an experiment designed to determine the ultimate stability of matter. Construction image. Mechanical "mole" (dosco machine) brought in by Morton Salt Co. to dig the cavity of IMB, 1979-1980
Resumo:
IMB (Irvine, Michigan, Brookline), a collaboration between the University of Michigan, the University of California at Irvine, and the U.S. Department of Energy, was an experiment designed to determine the ultimate stability of matter. Using data from the PMT hits (bl003799) the neutrino interaction point and direction in the detector are shown (long purple line). The produced position (short purple line) is also shown along with its cherenkov cone hitting the walls of the detector (yellow squares).
Resumo:
IMB (Irvine, Michigan, Brookline), a collaboration between the University of Michigan, the University of California at Irvine, and the U.S. Department of Energy, was an experiment designed to determine the ultimate stability of matter. Construction image. Finished cavity -- looking through tunnel to main part of mine.
Resumo:
IMB (Irvine, Michigan, Brookline), a collaboration between the University of Michigan, the University of California at Irvine, and the U.S. Department of Energy, was an experiment designed to determine the ultimate stability of matter. IMB construction image. Double-walled liner being installed in cavity. Walls already covered.
Resumo:
IMB (Irvine, Michigan, Brookline), a collaboration between the University of Michigan, the University of California at Irvine, and the U.S. Department of Energy, was an experiment designed to determine the ultimate stability of matter. IMB construction image. Entrance barrier formed from wooden beams, backed by salt on other side.
Resumo:
IMB (Irvine, Michigan, Brookline), a collaboration between the University of Michigan, the University of California at Irvine, and the U.S. Department of Energy, was an experiment designed to determine the ultimate stability of matter. IMB construction image. Liner and catwalk completed. Miner standing in bottom corner.
Resumo:
IMB (Irvine, Michigan, Brookline), a collaboration between the University of Michigan, the University of California at Irvine, and the U.S. Department of Energy, was an experiment designed to determine the ultimate stability of matter. IMB construction image. Photomultiplier tubes (PMT's) about to be lowered into tank. Tank still empty of water.
Resumo:
IMB (Irvine, Michigan, Brookline), a collaboration between the University of Michigan, the University of California at Irvine, and the U.S. Department of Energy, was an experiment designed to determine the ultimate stability of matter. IMB construction image. Underwater view along bottom of "pool" showing PMT's [photomultiplier tubes] on bottom and opposite wall.
Resumo:
IMB (Irvine, Michigan, Brookline), a collaboration between the University of Michigan, the University of California at Irvine, and the U.S. Department of Energy, was an experiment designed to determine the ultimate stability of matter. IMB construction image. Diver checking connection to PMT [photomultiplier tubes] housing.
Resumo:
IMB (Irvine, Michigan, Brookline), a collaboration between the University of Michigan, the University of California at Irvine, and the U.S. Department of Energy, was an experiment designed to determine the ultimate stability of matter. IMB construction image. Scuba diver shown in IMB pool. Upgraded version of 8-inch PMT's [photomultiplier tubes] shown with wave-shifter plates.
Resumo:
IMB (Irvine, Michigan, Brookline), a collaboration between the University of Michigan, the University of California at Irvine, and the U.S. Department of Energy, was an experiment designed to determine the ultimate stability of matter. The blue giant star Sanduleak in the large magellenic cloud exploded 170,000 years ago giving off a pulse of neutrinos that arrived at earth on 23 February 1987. For a few weeks it was as bright as 100 million suns.
Resumo:
IMB (Irvine, Michigan, Brookline), a collaboration between the University of Michigan, the University of California at Irvine, and the U.S. Department of Energy, was an experiment designed to determine the ultimate stability of matter. One of eight events recorded by IMB during the few seconds that the neutrino pulse from SN1987a passed through the detector. View looking into the south wall.
Resumo:
IMB (Irvine, Michigan, Brookline), a collaboration between the University of Michigan, the University of California at Irvine, and the U.S. Department of Energy, was an experiment designed to determine the ultimate stability of matter. PMT [photomultiplier tubes] hits from SN [supernovae] event projected onto sphere.