994 resultados para Pinus pinaster


Relevância:

20.00% 20.00%

Publicador:

Resumo:

O tamanho médio de partículas e a porosidade dos substratos condicionam as propriedades matriciais, interferindo na capacidade de retenção e de transmissão da água no meio. O conhecimento desses atributos é fundamental em processos de irrigação por capilaridade, para que o molhamento atinja as camadas superiores dos recipientes com níveis de tensão de água facilmente disponível. O presente trabalho teve como objetivo estudar a ascensão de água por capilaridade para determinar a posição mais apropriada do nível de saturação na ascensão capilar em recipientes com substratos de coco e pinus, de textura grossa e fina. Foram efetuados experimentos avaliando a ascensão de água por capilaridade em colunas segmentadas preenchidas com os substratos. Os valores de umidade em cada segmento foram calculados gravimetricamente e relacionados aos de tensão estimados pela curva de tensão dos substratos. Os substratos com textura fina apresentaram melhor elevação de água por capilaridade, com melhor elevação da umidade em níveis de tensão de água disponível. O substrato de coco fino apresentou água disponível em todo o perfil do recipiente, enquanto o de pinus apresentou as camadas superiores do recipiente com água retida em tensões abaixo do ponto de murcha permanente. O substrato fino de coco apresentou os melhores resultados para aplicação na irrigação por capilaridade, permitindo recomendar o seu uso com o nível de saturação posicionado a cinco centímetros do fundo do recipiente por quinze minutos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2009 and 2010 a study was conducted on the Hiawatha National Forest (HNF) to determine if whole-tree harvest (WTH) of jack pine would deplete the soil nutrients in the very coarse-textured Rubicon soil. WTH is restricted on Rubicon sand in order to preserve the soil fertility, but the increasing construction of biomass-fueled power plants is expected to increase the demand for forest biomass. The specific objectives of this study were to estimate biomass and nutrient content of above- and below-ground tree components in mature jack pine (Pinus banksiana) stands growing on a coarse-textured, low-productivity soil, determine pools of total C and N and exchangeable soil cations in Rubicon sand, and to compare the possible impacts of conventional stem-only harvest (CH) and WTH on soil nutrient pools and the implications for productivity of subsequent rotations. Four even-aged jack pine stands on Rubicon soil were studied. Allometric equations were used to estimate above-ground biomass and nutrients, and soil samples from each stand were taken for physical and chemical analysis. Results indicate that WTH will result in cation deficits in all stands, with exceptionally large Ca deficits occurring in two stands. Where a deficit does not occur, the cation surplus is small and, chemical weathering and atmospheric deposition is not anticipated to replace the removed cations. CH will result in a surplus of cations, and will likely not result in productivity declines during the first rotation. However even under CH, the surplus is small, and chemical weathering and atmospheric deposition will not supply enough cations for the second rotation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Red pine (Pinus resinosa Ait.) plantations have been established in Michigan with expectations of mixed final product goals: pulpwood, boltwood and possibly sawlogs. The effects of alternative treatments on tree and stand attributes were examined in: the Atlantic Mine trial, thinned in spring 2006 with three alternatives: (1) every fifth row removal plus crown thinning, (2) every third row removal plus crown thinning and (3) every third row removal plus thinning from below; the Crane Lake trial, thinned in fall 2004 with two alternatives: (1) every third row removal and (2) every third row removal plus thinning from above; the Middle Branch East trial, thinned in fall 2004 with two alternatives: (1) every third row removal plus one in three remaining trees and (2) every third row removal plus one in five remaining trees. All trials included control plots where no thinning was applied. The trials were established in the field as a randomized complete block experiments, in which individual trees were measured in 3-4 fixed-area plots located within each treatment unit. Growth responses of diameter at breast height, height, live crown length, stand basal area and stand volume were examined along with their increments. The Tukey multiple comparison test was used to detect significant differences between treatments in their effect on tree growth response. The results showed that diameter increment increased with increasing thinning intensity and was significantly larger in thinned plots compared to unthinned. Treatments did not substantially affect average tree height increment. Stand basal area increment was significantly larger in the control plot only the year after the harvest. Volume increment was significantly larger in controls, but did not differ considerably among remaining treatments. However, the ratio of volume increment to standing volume was significantly smaller in unthinned plots compared to thinned. Since thinning treatments in all trials hardly ever differed significantly in their effect on stand growth response, mainly due to the relatively short time of the evaluation, heavier thinnings should be favored due to higher volume increment rates and shorter time needed to reach desirable diameters. Nevertheless, economic evaluation based on obtained results will be conducted in the future in order to make final decisions about the most profitable treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tree populations at the rear edge of species distribution are sensitive to climate stress and drought. However, growth responses of these tree populations to those stressors may vary along climatic gradients. To analyze growth responses to climate and drought using dendrochronology in rear-edge Pinus nigra populations located along an aridity gradient. Tree-ring width chronologies were built for the twentieth century and related to monthly climatic variables, a drought index (Standardized Precipitation-Evapotranspiration Index), and two atmospheric circulation patterns (North Atlantic and Western Mediterranean Oscillations). Growth was enhanced by wet and cold previous autumns and warm late winters before tree-ring formation. The influence of the previous year conditions on growth increased during the past century. Growth was significantly related to North Atlantic and Western Mediterranean Oscillations in two out of five sites. The strongest responses of growth to the drought index were observed in the most xeric sites. Dry conditions before tree-ring formation constrain growth in rear-edge P. nigra populations. The comparisons of climate-growth responses along aridity gradients allow characterizing the sensitivity of relict stands to climate warming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The southernmost European natural and planted pine forests are among the most vulnerable areas to warming-induced drought decline. Both drought stress and management factors (e.g., stand origin or reduced thinning) may induce decline by reducing the water available to trees but their relative importances have not been properly assessed. The role of stand origin - densely planted vs. naturally regenerated stands - as a decline driver can be assessed by comparing the growth and vigor responses to drought of similar natural vs. planted stands. Here, we compare these responses in natural and planted Black pine (Pinus nigra) stands located in southern Spain. We analyze how environmental factors - climatic (temperature and precipitation anomalies) and site conditions - and biotic factors - stand structure (age, tree size, density) and defoliation by the pine processionary moth - drive radial growth and crown condition at stand and tree levels. We also assess the climatic trends in the study area over the last 60 years. We use dendrochronology, linear mixed-effects models of basal area increment and structural equation models to determine how natural and planted stands respond to drought and current competition intensity. We observed that a temperature rise and a decrease in precipitation during the growing period led to increasing drought stress during the late 20th century. Trees from planted stands experienced stronger growth reductions and displayed more severe crown defoliation after severe droughts than those from natural stands. High stand density negatively drove growth and enhanced crown dieback, particularly in planted stands. Also pine processionary moth defoliation was more severe in the growth of natural than in planted stands but affected tree crown condition similarly in both stand types. In response to drought, sharp growth reduction and widespread defoliation of planted Mediterranean pine stands indicate that they are more vulnerable and less resilient to drought stress than natural stands. To mitigate forest decline of planted stands in xeric areas such as the Mediterranean Basin, less dense and more diverse stands should be created through selective thinning or by selecting species or provenances that are more drought tolerant. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To assess if tree age may modulate the main climatic drivers of radial growth, two relict Pinus nigra subsp. salzmannii populations (Maria, most xeric site; Magina, least xeric site) were sampled in southern Spain near the limits of the species range. Tree-ring width residual chronologies for two age groups (mature trees, age <= 100 years (minimum 40 years); old trees, age > 100 years) were built to evaluate their responses to climate by relating them to monthly precipitation and temperature and a drought index (DRI) using correlation and response functions. We found that drought is the main driver of growth of relict P. nigra populations, but differences between sites and age classes were also observed. First, growth in the most xeric site depends on the drought severity during the previous autumn and the spring of the year of tree-ring formation, whereas in the relatively more mesic site growth is mainly enhanced by warm and wet conditions in spring. Second, growth of mature trees responded more to drought severity than that of old trees. Our findings indicate that drought severity will mainly affect growth of relict P. nigra populations dominated by mature trees in xeric sites. This conclusion may also apply to similar mountain Mediterranean conifer relicts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

M. J. Goos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For over 3 centuries, diameter-limit harvesting has been a predominant logging method in the northeastern United States. Silvicultural theory asserts that such intensively selective harvesting can lead to genetic degradation. A decrease in softwood productivity has recently been reported in Maine - has a long history of dysgenic selection degraded the genetic resources of Maine softwoods, contributing to a decrease in growth and productivity? This study examines two aspects of potential implications of diameter-limit harvesting: effects on residual phenotypes of red spruce and impacts on genetic diversity of white pine. Radial growth of residual red spruce trees in stands experiencing 50 years of fixed diameter-limit harvesting was measured using annual increment rings and compared with residual red spruce trees in positive selection stands. Trees remaiaing after several rounds of diameter-limit harvesting exhibited sigdicantl y smaller radial sizes throughout their lives, and displayed significantly slower growth rates for the first 80 years of measured growth. These results strongly suggest that the largest and fastest-growing genotypes and their respective gene complexes determining good radial growth have been removed from the diameter-limit stand. Dysgenic selection can be observed in fixed diarneter-limit stands, resulting in a diminished genetic resource and decreased residual stand value. To examine more direct genetic implications of long-term diameter-limit harvesting, microsatellite DNA markers were implemented to study genetic diversity of eastern white pine in Maine. Three age groups of trees were studied: mature trees older than 200 years, juvenile trees 5-30 years old, and embryos. Trees were genotyped at 10 microsatellite loci. Overall genetic diversity levels of eastern white pine in Maine were extremely high, with an average observed heterozygosity of 0.762. Genetic differentiation was minimal among and between all three age groups, although an excess of heterozygotes was shown in the mature and juvenile groups that was not reflected in the embryo group, which actually had a slight heterozygote deficiency. Allele frequencies did not differ significantly between age groups, but did reveal more rare and low frequency alleles in the embryo groups than in the mature group. Overall, low frequency alleles comprise the largest portion of alleles in the sample population, with no common alleles evident overall. These results suggest that significant genetic degradation has either not occurred for white pine, or that the results of dysgenic selection have not yet emerged. It is clear, however, that selective harvesting could result in a loss of low frequency alleles, which are a primary reserve of evolutionary potential in a species. Implications of these studies affect industrial forestry, regional economics, and ecological concerns for the northeast. Long-term diameter-limit harvesting can lead to a degradation of residual phenotypes, and an overall decrease in stand quality. Potentially, a loss of low frequency, locally adapted alleles could result in a decrease of allelic richness and degradation of the regidnal genetic resource. Decreased genetic variation can lead to seriously limited evolutionary potential of species and ecosystems, particularly in rapidly changing environments. Based on these findings, I recommend a reassessment of any harvesting prescription that includes fixed diameter-limit removals, particularly for species that have low natural genetic diversity levels or a limited natural range, such as red spruce. Maintenance of a healthy genetic reserve can avoid effects of dysgenic harvesting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AR