964 resultados para Peritoneal-exudate Macrophages


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A previously described extract of sheep fetal liver was reported to reverse many of the cytokine changes associated with aging in mice, including an augmented spleen cell ConA-stimulated production of IL-4 and decreased production of IL-2. Similar effects were not seen with adult liver preparations. These changes were observed in various strains of mice, including BALB/c, DBA/2 and C57BL/6, using mice with ages ranging from 8 to 110 weeks. Preliminary characterization of this crude extract showed evidence for the presence of Hb gamma chain, as well as of lipid A of LPS. We show below that purified preparations of sheep fetal Hb, but not adult Hb, in concert with suboptimally stimulating doses of LPS (lipid A), cooperate in the regulation of production of a number of cytokines, including TNFalpha and IL-6, in vitro. Furthermore, isolated fresh spleen or peritoneal cells from animals treated in vivo with the same combination of Hb and LPS, showed an augmented capacity to produce these cytokines on further culture in vitro. Evidence was also obtained for a further interaction between CLP, LPS and fetal Hb itself in this augmented cytokine production. These data suggest that some of the functional activities in the fetal liver extract reported earlier can be explained in terms of a novel immunomodulatory role of a mixture of LPS (lipid A) and fetal Hb.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Protein energy malnutrition is commonly associated with immune dysfunctions and is a major factor in susceptibility to infectious diseases. METHODS: In this study, we evaluated the impact of protein energy malnutrition on the capacity of monocytes and macrophages to upregulate arginase, an enzyme associated with immunosuppression and increased pathogen replication. RESULTS: Our results show that monocytes and macrophages are significantly increased in the bone marrow and blood of mice fed on a protein low diet. No alteration in the capacity of bone marrow derived macrophages isolated from malnourished mice to phagocytose particles, to produce the microbicidal molecule nitric oxide and to kill intracellular Leishmania parasites was detected. However, macrophages and monocytes from malnourished mice express significantly more arginase both in vitro and in vivo. Using an experimental model of visceral leishmaniasis, we show that following protein energy malnutrition, the increased parasite burden measured in the spleen of these mice coincided with increased arginase activity and that macrophages provide a more permissive environment for parasite growth. CONCLUSIONS: Taken together, these results identify a novel mechanism in protein energy malnutrition that might contributes to increased susceptibility to infectious diseases by upregulating arginase activity in myeloid cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The macrophage NLRC4 inflammasome drives potent innate immune responses against Salmonella by eliciting caspase-1-dependent proinflammatory cytokine production (e.g., interleukin-1β [IL-1β]) and pyroptotic cell death. However, the potential contribution of other cell types to inflammasome-mediated host defense against Salmonella was unclear. Here, we demonstrate that neutrophils, typically viewed as cellular targets of IL-1β, themselves activate the NLRC4 inflammasome during acute Salmonella infection and are a major cell compartment for IL-1β production during acute peritoneal challenge in vivo. Importantly, unlike macrophages, neutrophils do not undergo pyroptosis upon NLRC4 inflammasome activation. The resistance of neutrophils to pyroptotic death is unique among inflammasome-signaling cells so far described and allows neutrophils to sustain IL-1β production at a site of infection without compromising the crucial inflammasome-independent antimicrobial effector functions that would be lost if neutrophils rapidly lysed upon caspase-1 activation. Inflammasome pathway modification in neutrophils thus maximizes host proinflammatory and antimicrobial responses during pathogen challenge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les déacetylases d'histones (HDACs) déacétylent non seulement les histones, ce qui a généralement pour effet d'augmenter la transcription et l'expression génique, mais également d'autres protéines comme par exemple des protéines de choc thermique (HSP90), la tubuline alpha, certains récepteurs aux stéroïdes ainsi que de nombreux facteurs de transcription (NF-kB p65, Sp1, etc.). Ainsi les HDACs participent au contrôle de nombreux processus cellulaires. Les inhibiteurs des HDACs (ou HDACi), de part leur capacité à induire la différenciation cellulaire et l'apoptose, sont parmi les anti-cancéreux les plus prometteurs en cours de développement pour dans le traitement des néoplasies solides et hématologiques. Récemment, l'activité anti-inflammatoire et immuno- modulatrice des HDACi a été mise en évidence et exploitée avec succès pour le traitement de pathologies auto-immunes dans des modèles précliniques. L'effet des HDACi sur la réponse immunitaire innée restant largement inconnu, nous avons entrepris la première étude d'envergure dans ce domaine. Dans un premier article, nous démontrons que les HDACi inhibent l'expression de nombreux gènes (récepteurs aux produits microbiens, cytokines, chimiokines, molécules d'adhésion et co-stimulatrices, facteurs de croissance, etc.) impliqués dans les défenses anti¬infectieuses in vitro. En accord avec ces données, les HDACi augmentent la mortalité d'animaux infectés dans des modèles de pneumonie et de candidose bénignes. De manière congruente, les HDACi protègent les animaux de mortalité induite par choc toxique et septique en inhibant la réponse inflammatoire exubérante qui caractérise ces pathologies (Roger T. et al., Blood 2011). Afin de caractériser plus en détails l'influence des HDACi sur la réponse immunitaire innée, nous avons également analysé l'impact de deux HDACi, l'acide valproïque (VPA) et la trichostatin A (TSA), sur les principaux mécanismes de défenses antimicrobiennes des macrophages. Dans un second article (Mombelli et al., Journal of Infectious Diseases 2011), nous rapportons que la VPA et la TSA diminuent la capacité des macrophages à phagocyter et à détruire les bactéries Gram-positives Staphylococcus aureus et Gram-négatives Escherichia coli. En accord avec ces données, les HDACi inhibent l'expression de molécules impliquées dans la phagocytose comme les récepteurs éboueurs (Msr 1 et CD14) et de type lectine (Dectin 1), ainsi que les récepteurs aux opsonines (intégrines). Par ailleurs, les HDACi interfèrent avec l'expression de différentes sous unités de la NADPH oxydase (gp91p"ox, p22 phox, p47 phox, p40 phox, p67 phox et Rac2) et de l'oxyde nitrique (NO) synthétase inductible (iNOS), qui sont responsables de la production de dérivés oxygénés (ROS) et nitrogénés (NO) essentiels à la destruction des microorganismes dans le phagolysosome. En résumé, cette étude décrit des mécanismes par lesquels les HDACi diminuent la capacité d'ingérer et de détruire les bactéries, et ainsi augmentent la susceptibilité aux infections. Globalement, nos données indiquent que les HDACi sont de puissants anti¬inflammatoires qui pourraient favoriser la survenue d'infections chez les patients cancéreux traités avec ces drogues, comme semble par ailleurs le suggérer des études cliniques rapportées dans la littérature. Nous proposons un suivi clinique infectieux strict chez les patients traités avec ces agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Macrophages play a critical role in wound repair. However, the specific role of the different macrophage subtypes in wound repair remains incompletely understood. The aim of this study was to compare the wound repair activities of undifferentiated macrophages (M0), classically activated macrophages (M1) and alternatively activated (M2) macrophages. Methods: The macrophage repair activities of intestinal wounds were evaluated using in vitro and in vivo models. Results: All three macrophage subtypes enhanced wound closure in vitro, with the M2 macrophages demonstrating greater repair activities than the M0 and M1 macrophages. Injection of M0 and M2 macrophages into mice with experimental dextran sodium sulfate-induced colitis significantly enhanced ulcer repair when compared to control mice. In contrast, injection of M1 macrophages did not affect ulcer repair. Conclusions: These results underscore the wound repair capacity of different macrophage subsets. Notably, wound repair activity is not restricted to M2 macrophages, as the current literature suggests. © 2014 S. Karger AG, Basel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macrophages play key roles in inflammatory disorders. Therefore, they are targets of treatments aiming at their local destruction in inflammation sites. However, injection of low molecular mass therapeutics, including photosensitizers, in inflamed joints results in their rapid efflux out of the joints, and poor therapeutic index. To improve selective uptake and increase retention of therapeutics in inflamed tissues, hydrophilic nanogels based on chitosan, of which surface was decorated with hyaluronate and which were loaded with one of three different anionic photosensitizers were developed. Optimal uptake of these functionalized nanogels by murine RAW 264.7 or human THP-1 macrophages as models was achieved after <4h incubation, whereas only negligible uptake by murine fibroblasts used as control cells was observed. The uptake by cells and the intracellular localization of the photosensitizers, of the fluorescein-tagged chitosan and of the rhodamine-tagged hyaluronate were confirmed by fluorescence microscopy. Photodynamic experiments revealed good cell photocytotoxicity of the photosensitizers entrapped in the nanogels. In a mouse model of rheumatoid arthritis, injection of free photosensitizers resulted in their rapid clearance from the joints, while nanogel-encapsulated photosensitizers were retained in the inflamed joints over a longer period of time. The photodynamic treatment of the inflamed joints resulted in a reduction of inflammation comparable to a standard corticoid treatment. Thus, hyaluronate-chitosan nanogels encapsulating therapeutic agents are promising materials for the targeted delivery to macrophages and long-term retention of therapeutics in leaky inflamed articular joints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Waddlia chondrophila is an obligate intracellular bacterium considered as a potential agent of abortion in both humans and bovines. This member of the order Chlamydiales multiplies rapidly within human macrophages and induces lysis of the infected cells. To understand how this Chlamydia-like micro-organism invades and proliferates within host cells, we investigated its trafficking within monocyte-derived human macrophages. Vacuoles containing W. chondrophila acquired the early endosomal marker EEA1 during the first 30 min following uptake. However, the live W. chondrophila-containing vacuoles never co-localized with late endosome and lysosome markers. Instead of interacting with the endosomal pathway, W. chondrophila immediately co-localized with mitochondria and, shortly after, with endoplasmic reticulum- (ER-) resident proteins such as calnexin and protein disulfide isomerase. The acquisition of mitochondria and ER markers corresponds to the beginning of bacterial replication. It is noteworthy that mitochondrion recruitment to W. chondrophila inclusions is prevented only by simultaneous treatment with the microtubule and actin cytoskeleton-disrupting agents nocodazole and cytochalasin D. In addition, brefeldin A inhibits the replication of W. chondrophila, supporting a role for COPI-dependent trafficking in the biogenesis of the bacterial replicating vacuole. W. chondrophila probably survives within human macrophages by evading the endocytic pathway and by associating with mitochondria and the ER. The intracellular trafficking of W. chondrophila in human macrophages represents a novel route that differs strongly from that used by other members of the order Chlamydiales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macrophages play a critical role in intestinal wound repair. However, the mechanisms of macrophage-assisted wound repair remain poorly understood. We aimed to characterize more clearly the repair activities of murine and human macrophages. Murine macrophages were differentiated from bone marrow cells and human macrophages from monocytes isolated from peripheral blood mononuclear cells of healthy donors (HD) or Crohn's disease (CD) patients or isolated from the intestinal mucosa of HD. In-vitro models were used to study the repair activities of macrophages. We found that murine and human macrophages were both able to promote epithelial repair in vitro. This function was mainly cell contact-independent and relied upon the production of soluble factors such as the hepatocyte growth factor (HGF). Indeed, HGF-silenced macrophages were less capable of promoting epithelial repair than control macrophages. Remarkably, macrophages from CD patients produced less HGF than their HD counterparts (HGF level: 84âeuro0/00±âeuro0/0027âeuro0/00pg/mg of protein and 45âeuro0/00±âeuro0/0034âeuro0/00pg/mg of protein, respectively, for HD and CD macrophages, Pâeuro0/00<âeuro0/000·009) and were deficient in promoting epithelial repair (repairing activity: 90·1âeuro0/00±âeuro0/004·6 and 75·8âeuro0/00±âeuro0/008·3, respectively, for HD and CD macrophages, Pâeuro0/00<âeuro0/000·0005). In conclusion, we provide evidence that macrophages act on wounded epithelial cells to promote epithelial repair through the secretion of HGF. The deficiency of CD macrophages to secrete HGF and to promote epithelial repair might contribute to the impaired intestinal mucosal healing in CD patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AbstractBackground: Mucosal healing is becoming a major goal in the treatment of Crohn's disease. It has been previously reported that myeloid cells induce mucosal healing in a mouse model of acute colitis. The aim in this study is to investigate the pro-repair function of myeloid cells in healthy donors (HD) and Crohn's disease patients (CD).Methods: Peripheral blood mononuclear cells (PBMC) from HD and CD patients were isolated from blood samples and tested either directly or after differentiation ex-vivo into macrophages (Μφ). Intestinal macrophages (IMACs) were isolated from the bowel mucosa of patients undergoing intestinal surgical resections. Through an in vitro wound healing assay the repairing ability of these various human myeloid cells and the mechanisms responsible of wound healing were evaluated.Results: PBMC and myeloid CD14+ cells from HD and CD were not able to repair at any tested cell concentration. Μφ from HD and ulcerative colitis (UC) patients were able to induce wound healing and this capacity was partially mediated by Hepatocyte Growth Factor (HGF). Remarkably, CD Μφ were unable to promote wound healing and produced lower levels of HGF as compared to Μφ from HD or UC patients. In particular, Μφ from CD in active phase (ACD) exhibited the weakest repair function, but this defect was rescued if rh- GM-CSF was added during the differentiation of PBMCs. Interestingly, IMACs from HD promoted wound healing and produced HGF.Conclusion: We demonstrated that CD Μφ, unlike HD or UC Μφ, were defective in promoting wound healing, in particular if coming from an ACD. This deficient pro-repair function was related to a lower production of HGF. IMACs from HD colonic mucosa induced wound healing, confirming the results obtained with Μφ. Our results are in keeping with the current theory of CD as an innate immunodeficiency. In this context, Μφ may be responsible for the mucosal repair defects observed in CD patients and for the subsequent chronic activation of the adaptive immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alveolar macrophages have the ability to downregulate immune processes in vitro. We have recently suggested the presence of interleukin-1 (IL-1) inhibitors in the supernatants of human bronchoalveolar lavage cells from patients with idiopathic pulmonary fibrosis or sarcoidosis. In the present study, we further analyze the cellular origin and the biologic properties of a 20- to 25-kD IL-1 inhibitor spontaneously produced by cultured human alveolar macrophages (AM). The inhibitor blocks IL-1-induced prostaglandin E2 production by human fibroblasts and the IL-1-related increase of phytohemagglutinin-induced murine thymocyte proliferation. After rigorous IL-1 alpha and IL-1 beta depletion, supernatants of lung macrophages specifically block the binding of IL-1 to its receptor on the murine thymoma cell line EL4-6.1 in a dose-dependent manner. These results indicate that AM from both normal donors and patients produce a specific IL-1 inhibitor that may be of importance in protecting the alveolar environment from the deleterious effects of excessive IL-1 production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent publications have demonstrated that the protease caspase-1 is responsible for the processing of pro-interleukin 18 (IL-18) into the active form. Studies on cell lines and murine macrophages have shown that the bacterial invasion factor SipB activates caspase-1, triggering cell death. Thus, we investigated the role of SipB in the activation and release of IL-18 in human alveolar macrophages (AM), which are the first line of defense against inhaled pathogens. Under steady-state conditions, AM are a more important source of IL-18 than are dendritic cells (DC) and monocytes. Cytokine production by AM and DC was compared after both types of cells had been infected with a virulent strain of Salmonella enterica serovar Typhimurium and an isogenic sipB mutant, which were used as an infection model. Infection with virulent Salmonella led to marked cell death with features of apoptosis while both intracellular activation and release of IL-18 were demonstrated. In contrast, the sipB mutant did not induce such cell death or the release of active IL-18. The specific caspase-1 inhibitor Ac-YVAD-CMK blocked the early IL-18 release in AM infected with the virulent strain. However, the type of Salmonella infection did not differentially regulate IL-18 gene expression. We concluded that the bacterial virulence factor SipB plays an essential posttranslational role in the intracellular activation of IL-18 and the release of the cytokine in human AM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface characteristics (area, chemical reactivity) play an important role in cell response to nanomaterials. The aim of this study was to evaluate the oxidative and inflammatory effects of multi−wall carbon nanotubes (MWCNT) uncoated (P0) or coated with carboxylic polyacid or polystyrene polybutadiene polymetacrylate of methyl polymers (P1 and P2 respectively) on murine macrophages (RAW 264.7 cell line). Carbon black nanoparticles (CB, diameter 95 nm) and crocidolite fibers (diameter: 80 nm, length: < 10 μm) were used as controls. Surface functional groups present on MWCNTs were analyzed by Knudsen flow reactor. The amount of acidic sites was P1> P0> P2, for basic sites was P0> P1>> P2 and for oxidizable sites was P0> P2> P1. In contact with cells, P2 formed smaller aggregates than P0 and P1, which were of similar size. Optical microscopy showed the formation of vacuoles after exposure only to P0, P1 and crocidolite. Incubation of cells with P0, P1 and crocidolite fibers induced a significant and similar decrease in metabolic activity, whereas P2 and CB had no effect. Cell number and membrane permeability were unmodified by incubation with the different particles. Incubation of macrophages with P0, P1 and crocidolite induced a dose− and time−dependent increase in mRNA expression of oxidative stress marker (HO−1, GPX1) and inflammatory mediators (TNF−a, MIP−2). No such responses were observed with P2 and CB. In conclusion, MWCNT coated with a carboxylic polyacid polymer exerted similar oxidative and inflammatory effects to uncoated MWCNT. By contrast, no such effects were observed with MWCNT coated with a polystyrene−based polymer. This kind of coating could be useful to decrease MWCNT toxicity.