958 resultados para Pea enation mosaic virus 1 (PEMV1)
Resumo:
Earlier reports have shown that cdc2 kinase is activated in cells infected with herpes simplex virus 1 and that the activation is mediated principally by two viral proteins, the infected cell protein 22 (ICP22) and the protein kinase encoded by UL13. The same proteins are required for optimal expression of a subset of late (γ2) genes exemplified by US11. In this study, we used a dominant-negative cdc2 protein to determine the role of cdc2 in viral gene expression. We report the following. (i) The cdc2 dominant-negative protein had no effect in the synthesis and accumulation of at least two α-regulatory proteins (ICP4 and ICP0), two β-proteins (ribonucleotide reductase major subunit and single-stranded DNA-binding protein), and two γ1-proteins (glycoprotein D and viral protease). US11, a γ2-protein, accumulated only in cells in which cdc2 dominant-negative protein could not be detected or was made in very small amounts. (ii) The sequence of amino acids predicted to be phosphorylated by cdc2 is present in at least 27 viral proteins inclusive of the regulatory proteins ICP4, ICP0, and ICP22. In in vitro assays, we demonstrated that cdc2 specifically phosphorylated a polypeptide consisting of the second exon of ICP0 but not a polypeptide containing the sequence of the third exon as would be predicted from the sequence analysis. We conclude that cdc2 is required for optimal expression of a subset of γ2-proteins whose expression is also regulated by the viral proteins (ICP22 and UL13) that mediate the activation of cdc2 kinase.
Resumo:
Duplexes constituted by closed or open RNA circles paired to single-stranded oligonucleotides terminating with 3′-CCAOH form resected pseudoknots that are substrates of yeast histidyl-tRNA synthetase. Design of this RNA fold is linked to the mimicry of the pseudoknotted amino acid accepting branch of the tRNA-like domain from brome mosaic virus, known to be charged by tyrosyl-tRNA synthetases, with RNA minihelices recapitulating accepting branches of canonical tRNAs. Prediction of the histidylation function of the new family of minimalist tRNA-like structures relates to the geometry of resected pseudoknots that allows proper presentation to histidyl-tRNA synthetase of analogues of the histidine identity determinants N-1 and N73 present in tRNAs. This geometry is such that the analogue of the major N-1 histidine determinant in the RNA circles faces the analogue of the discriminator N73 nucleotide in the accepting oligonucleotides. The combination of identity elements found in tRNAHis species from archaea, eubacteria, and organelles (G-1/C73) is the most efficient for determining histidylation of the duplexes. The inverse combination (C-1/G73) leads to the worst histidine acceptors with charging efficiencies reduced by 2–3 orders of magnitude. Altogether, these findings open new perspectives for understanding evolution of tRNA identity and serendipitous RNA functions.
Resumo:
Flock house virus (FHV), a single-stranded RNA insect virus, has previously been reported to cross the kingdom barrier and replicate in barley protoplasts and in inoculated leaves of several plant species [Selling, B. H., Allison, R. F. & Kaesberg, P. (1990) Proc. Natl. Acad. Sci. USA 87, 434–438]. There was no systemic movement of FHV in plants. We tested the ability of movement proteins (MPs) of plant viruses to provide movement functions and cause systemic spread of FHV in plants. We compared the growth of FHV in leaves of nontransgenic and transgenic plants expressing the MP of tobacco mosaic virus or red clover necrotic mosaic virus (RCNMV). Both MPs mobilized cell-to-cell and systemic movement of FHV in Nicotiana benthamiana plants. The yield of FHV was more than 100-fold higher in the inoculated leaves of transgenic plants than in the inoculated leaves of nontransgenic plants. In addition, FHV accumulated in the noninoculated upper leaves of both MP-transgenic plants. RCNMV MP was more efficient in mobilizing FHV to noninoculated upper leaves. We also report here that FHV replicates in inoculated leaves of six additional plant species: alfalfa, Arabidopsis, Brassica, cucumber, maize, and rice. Our results demonstrate that plant viral MPs cause cell-to-cell and long-distance movement of an animal virus in plants and offer approaches to the study of the evolution of viruses and mechanisms governing mRNA trafficking in plants as well as to the development of promising vectors for transient expression of foreign genes in plants.
Resumo:
Antisense-mediated gene silencing (ASGS) and posttranscriptional gene silencing (PTGS) with sense transgenes markedly reduce the steady-state mRNA levels of endogenous genes similar in transcribed sequence. RNase protection assays established that silencing in tobacco plants transformed with plant-defense-related class I sense and antisense chitinase (CHN) transgenes is at the posttranscriptional level. Infection of tobacco plants with cucumber mosaic virus strain FN and a necrotizing strain of potato virus Y, but not with potato virus X, effectively suppressed PTGS and ASGS of both the transgenes and homologous endogenes. This suggests that ASGS and PTGS share components associated with initiation and maintenance of the silent state. Small, ca. 25-nt RNAs (smRNA) of both polarities were associated with PTGS and ASGS in CHN transformants as reported for PTGS in other transgenic plants and for RNA interference in Drosophila. Similar results were obtained with an antisense class I β-1,3-glucanase transformant showing that viral suppression and smRNAs are a more general feature of ASGS. Several current models hold that diverse signals lead to production of double-stranded RNAs, which are processed to smRNAs that then trigger PTGS. Our results provide direct evidence for mechanistic links between ASGS and PTGS and suggest that ASGS could join a common PTGS pathway at the double-stranded RNA step.
Resumo:
Salicylic acid (SA) plays a critical signaling role in the activation of plant defense responses after pathogen attack. We have identified several potential components of the SA signaling pathway, including (i) the H2O2-scavenging enzymes catalase and ascorbate peroxidase, (ii) a high affinity SA-binding protein (SABP2), (iii) a SA-inducible protein kinase (SIPK), (iv) NPR1, an ankyrin repeat-containing protein that exhibits limited homology to IκBα and is required for SA signaling, and (v) members of the TGA/OBF family of bZIP transcription factors. These bZIP factors physically interact with NPR1 and bind the SA-responsive element in promoters of several defense genes, such as the pathogenesis-related 1 gene (PR-1). Recent studies have demonstrated that nitric oxide (NO) is another signal that activates defense responses after pathogen attack. NO has been shown to play a critical role in the activation of innate immune and inflammatory responses in animals. Increases in NO synthase (NOS)-like activity occurred in resistant but not susceptible tobacco after infection with tobacco mosaic virus. Here we demonstrate that this increase in activity participates in PR-1 gene induction. Two signaling molecules, cGMP and cyclic ADP ribose (cADPR), which function downstream of NO in animals, also appear to mediate plant defense gene activation (e.g., PR-1). Additionally, NO may activate PR-1 expression via an NO-dependent, cADPR-independent pathway. Several targets of NO in animals, including guanylate cyclase, aconitase, and mitogen-activated protein kinases (e.g., SIPK), are also modulated by NO in plants. Thus, at least portions of NO signaling pathways appear to be shared between plants and animals.
Resumo:
The promoter from rice tungro bacilliform badnavirus (RTBV) is expressed only in phloem tissues in transgenic rice plants. RF2a, a b-Zip protein from rice, is known to bind to the Box II cis element near the TATA box of the promoter. Here, we report that the full-length RTBV promoter and a truncated fragment E of the promoter, comprising nucleotides −164 to +45, result in phloem-specific expression of β-glucuronidase (GUS) reporter genes in transgenic tobacco plants. When a fusion gene comprising the cauliflower mosaic virus 35S promoter and RF2a cDNA was coexpressed with the GUS reporter genes, GUS activity was increased by 2–20-fold. The increase in GUS activity was positively correlated with the amount of RF2a, and the expression pattern of the RTBV promoter was altered from phloem-specific to constitutive. Constitutive expression of RF2a did not induce morphological changes in the transgenic plants. In contrast, constitutive overexpression of the b-ZIP domain of RF2a had a strong effect on the development of transgenic plants. These studies suggest that expression of the b-Zip domain can interfere with the function of homologues of RF2a that regulate development of tobacco plants.
Resumo:
Salicylic acid (SA) is an important component of systemic-acquired resistance in plants. It is synthesized from benzoic acid (BA) as part of the phenylpropanoid pathway. Benzaldehyde (BD), a potential intermediate of this pathway, was found in healthy and tobacco mosaic virus (TMV)-inoculated tobacco (Nicotiana tabacum L. cv Xanthi-nc) leaf tissue at 100 ng/g fresh weight concentrations as measured by gas chromatography-mass spectrometry. BD was also emitted as a volatile organic compound from tobacco tissues. Application of gaseous BD to plants enclosed in jars caused a 13-fold increase in SA concentration, induced the accumulation of the pathogenesis-related transcript PR-1, and increased the resistance of tobacco to TMV inoculation. [13C6]BD and [2H5]benzyl alcohol were converted to BA and SA. Labeling experiments using [13C1]Phe in temperature-shifted plants inoculated with the TMV showed high enrichment of cinnamic acids (72%), BA (34%), and SA (55%). The endogenous BD, however, contained nondetectable enrichment, suggesting that BD was not the intermediate between cinnamic acid and BA. These results show that BD and benzyl alcohol promote SA accumulation and expression of defense responses in tobacco, and provide insight into the early steps of SA biosynthesis.
Resumo:
Piperonylic acid (PA) is a natural molecule bearing a methylenedioxy function that closely mimics the structure of trans-cinnamic acid. The CYP73A subfamily of plant P450s catalyzes trans-cinnamic acid 4-hydroxylation, the second step of the general phenylpropanoid pathway. We show that when incubated in vitro with yeast-expressed CYP73A1, PA behaves as a potent mechanism-based and quasi-irreversible inactivator of trans-cinnamate 4-hydroxylase. Inactivation requires NADPH, is time dependent and saturable (KI = 17 μm, kinact = 0.064 min−1), and results from the formation of a stable metabolite-P450 complex absorbing at 427 nm. The formation of this complex is reversible with substrate or other strong ligands of the enzyme. In plant microsomes PA seems to selectively inactivate the CYP73A P450 subpopulation. It does not form detectable complexes with other recombinant plant P450 enzymes. In vivo PA induces a sharp decrease in 4-coumaric acid concomitant to cinnamic acid accumulation in an elicited tobacco (Nicotiana tabacum) cell suspension. It also strongly decreases the formation of scopoletin in tobacco leaves infected with tobacco mosaic virus.
Resumo:
We analyzed transgenic tobacco (Nicotiana tabacum L.) expressing Stpd1, a cDNA encoding sorbitol-6-phosphate dehydrogenase from apple, under the control of a cauliflower mosaic virus 35S promoter. In 125 independent transformants variable amounts of sorbitol ranging from 0.2 to 130 μmol g−1 fresh weight were found. Plants that accumulated up to 2 to 3 μmol g−1 fresh weight sorbitol were phenotypically normal, with successively slower growth as sorbitol amounts increased. Plants accumulating sorbitol at 3 to 5 μmol g−1 fresh weight occasionally showed regions in which chlorophyll was partially lost, but at higher sorbitol amounts young leaves of all plants lost chlorophyll in irregular spots that developed into necrotic lesions. When sorbitol exceeded 15 to 20 μmol g−1 fresh weight, plants were infertile, and at even higher sorbitol concentrations the primary regenerants were incapable of forming roots in culture or soil. In mature plants sorbitol amounts varied with age, leaf position, and growth conditions. The appearance of lesions was correlated with high sorbitol, glucose, fructose, and starch, and low myo-inositol. Supplementing myo-inositol in seedlings and young plants prevented lesion formation. Hyperaccumulation of sorbitol, which interferes with inositol biosynthesis, seems to lead to osmotic imbalance, possibly acting as a signal affecting carbohydrate allocation and transport.
Resumo:
Replication-competent, attenuated herpes simplex virus-1 (HSV-1) derivatives that contain engineered mutations into the viral γ34.5 virulence gene have been used as oncolytic agents. However, as attenuated mutants often grow poorly, they may not completely destroy some tumors and surviving cancer cells simply regrow. Thus, although HSV-1 γ34.5 mutants can reduce the growth of human tumor xenografts in mice and have passed phase I safety studies, their efficacy is limited because they replicate poorly in many human tumor cells. Previously, we selected for a γ34.5 deletion mutant variant that regained the ability to replicate efficiently in tumor cells. Although this virus contains an extragenic suppressor mutation that confers enhanced growth in tumor cells, it remains attenuated. Here, we demonstrate that the suppressor virus replicates to greater levels in prostate carcinoma cells and, importantly, is a more potent inhibitor of tumor growth in an animal model of human prostate cancer than the γ34.5 parent virus. Thus, genetic selection in cancer cells can be used as a tool to enhance the antitumor activity of a replication-competent virus. The increased therapeutic potency of this oncolytic virus may be useful in the treatment of a wide variety of cancers.
Resumo:
Transgenic tobacco (Nicotiana tabacum cv. Turkish Samsun NN) plants expressing a truncated replicase gene sequence from RNA-2 of strain Fny of cucumber mosaic virus (CMV) are resistant to systemic CMV disease. This is due to suppression of virus replication and cell-to-cell movement in the inoculated leaves of these plants. In this study, microinjection protocols were used to directly examine cell-to-cell trafficking of CMV viral RNA in these resistant plants. CMV RNA fluorescently labeled with the nucleotide-specific TOTO-1 iodide dye, when coinjected with unlabeled CMV 3a movement protein (MP), moved rapidly into the surrounding mesophyll cells in mature tobacco leaves of vector control and untransformed plants. Such trafficking required the presence of functional CMV 3a MP. In contrast, coinjection of CMV 3a MP and CMV TOTO-RNA failed to move in transgenic resistant plants expressing the CMV truncated replicase gene. Furthermore, coinjection of 9.4-kDa fluorescein-conjugated dextran (F-dextran) along with unlabeled CMV 3a MP resulted in cell-to-cell movement of the F-dextran in control plants, but not in the transgenic plants. Similar results were obtained with viral RNA when the 30-kDa MP of tobacco mosaic virus (TMV) was coinjected with TMV TOTO-RNA into replicase-resistant transgenic tobacco expressing the 54-kDa gene sequence of TMV. However, in these transgenic plants, the TMV-MP was still capable of mediating cell-to-cell movement of itself and the 9.4-kDa F-dextran. These results indicate that an inhibition of cell-to-cell viral RNA trafficking is correlated with replicase-mediated resistance. This raises the possibility that the RNA-2 product is potentially involved in the regulation of cell-to-cell movement of viral infectious material during CMV replication.
Resumo:
The open reading frame P (ORF P) is located in the domain and on the DNA strand of the herpes simplex virus 1 transcribed during latent infection. ORF P is not expressed in productively infected cells as a consequence of repression by the binding of the major viral regulatory protein to its high-affinity binding site. In cells infected with a mutant virus carrying a derepressed gene, ORF P protein is extensively posttranslationally processed. We report that ORF P interacts with a component of the splicing factor SF2/ASF, pulls down a component of the SM antigens, and colocalizes with splicing factors in nuclei of infected cells. The hypothesis that ORF P protein may act to regulate viral gene expression, particularly in situations such as latently infected sensory neurons in which the major regulatory protein is not expressed, is supported by the evidence that in cells infected with a mutant in which the ORF P gene was derepressed, the products of the regulatory genes alpha 0 and alpha 22 are reduced in amounts early in infection but recover late in infection. The proteins encoded by these genes are made from spliced mRNAs, and the extent of recovery of these proteins late in infection correlates with the extent of accumulation of post-translationally processed forms of ORF P protein.
Resumo:
Cells infected with herpes simplex virus 1 (HSV-1) undergo productive or latent infection without exhibiting features characteristic of apoptosis. In this report, we show that HSV-1 induces apoptosis but has evolved a function that blocks apoptosis induced by infection as well as by other means. Specifically, (i) Vero cells infected with a HSV-1 mutant deleted in the regulatory gene alpha 4 (that encodes repressor and transactivating functions), but not those infected with wild-type HSV-1(F), exhibit cytoplasmic blebbing, chromatin condensation, and fragmented DNA detected as a ladder in agarose gels or by labeling free DNA ends with terminal transferase; (ii) Vero cells infected with wild-type HSV-1(F) or cells expressing the alpha 4 gene and infected with the alpha 4- virus did not exhibit apoptosis; (iii) fragmentation of cellular DNA was observed in Vero cells that were mock-infected or infected with the alpha 4- virus and maintained at 39.5 degrees C, but not in cells infected with wild-type virus and maintained at the same temperature. Wild-type strains of HSV-1 with limited extrahuman passages, such as HSV-1 (F), carry a temperature-sensitive lesion in the alpha 4 gene and at 39.5 degrees C only alpha genes are expressed. These results indicate that the product of the alpha 4 gene is able to suppress apoptosis induced by the virus as well by other means.
Resumo:
Derivatives of the cauliflower mosaic virus 35S promoter lacking CG and CNG methylation targets were constructed and used to direct transcription of reporter gene constructs in transiently transformed protoplasts. Such methylation-target-free (MTF) promoters, although weaker than the 35S promoter, retain significant activity despite mutation of the as-1 element. The effect of methylation on gene expression in MTF- and 35S-promoter driven constructs was examined. Even when the promoter region was free of methylation targets, reporter gene expression was markedly reduced when cytosine residues in CG dinucleotides were methylated in vitro prior to transformation. Mosaic methylation experiments, in which only specific parts of the plasmids were methylated, revealed that methylation of the coding region alone has a negative effect on reporter gene expression. Methylation nearer the 5' end of the coding region was more inhibitory, consistent with inhibition of transcription elongation.
Resumo:
An essential step in the initiation of a virus infection is the release of the viral genome from the other constituents of the virus particle, a process referred to as uncoating. We have used reverse transcription and polymerase chain reaction amplification procedures to determine the rate and direction of in vivo uncoating of the rod-shaped tobacco mosaic virus. The virus particles contain a single 6.4-kb RNA molecule that lies between successive turns of a helical arrangement of coat protein subunits. When the particles are introduced into plant cells, the subunits are removed via a bidirectional uncoating mechanism. Within 2-3 min, the part of the viral RNA from the 5' end to a position >70% toward the 3' end has been freed of coat protein subunits. This is followed by removal of subunits from the 3' end of the RNA and sequential uncoating of the RNA in a 3'-to-5' direction. An internal region of the viral RNA is the final part to be uncoated. Progeny virus particles are detected in the cells 35-40 min after inoculation.