945 resultados para Passive immunity
Resumo:
This paper examines two passive techniques for vibration reduction in mechanical systems: the first one is based on dynamic vibration absorbers (DVAs) and the second uses resonant circuit shunted (RCS) piezoceramics. Genetic algorithms are used to determine the optimal design parameters with respect to performance indexes, which are associated with the dynamical behavior of the system over selected frequency bands. The calculation of the frequency response functions (FRFs) of the composite structure (primary system + DVAs) is performed through a substructure coupling technique. A modal technique is used to determine the frequency response function of the structure containing shunted piezoceramics which are bonded to the primary structure. The use of both techniques simultaneously on the same structure is investigated. The methodology developed is illustrated by numerical applications in which the primary structure is represented by simple Euler-Bernoulli beams. However, the design aspects of vibration control devices presented in this paper can be extended to more complex structures.
Resumo:
We describe a short time model for inducing experimental emphysema in rats by chronic tobacco smoke inhalation. Three groups of male Wistar rats (6 months old) were studied: controls (N = 8), rats intoxicated for 45 days (s-45, N = 7) or for 90 days (s-90, N = 8). The exposed animals were intoxicated 3 times a day (10 cigarettes per exposure period), 5 days a week. Pulmonary damage was assessed by means of functional tests and quantitative pathological examination of the airways and lung parenchyma. The s-45 and s-90 animals were similar in terms of functional residual capacity (FRC) corrected for body weight (FRC/kg) but both groups of smoking rats exhibited significantly higher FRC/kg values than the controls (s-45 = 6.33; s-90 = 6.46; controls = 3.78; P<0.05). When the two groups of smoking rats were pooled together and compared to controls, they showed decreased lung elastance (1.6 vs 2.19; P = 0.046) and increased mean linear intercept (Lm) (85.14 vs 66.44; P = 0.025). The s-90 animals presented higher inflammation and muscular hypertrophy at the level of the axial bronchus than the controls (P<0.05). When smoking groups were pooled and compared to controls, they presented significantly higher inflammation at the lateral level (P = 0.028), as well as airway secretory hyperplasia (P = 0.024) and smooth muscle hypertrophy (P = 0.005) at the axial level. Due to its simplicity, low cost and short duration, this technique may be a useful model to obtain new information about airspace remodeling due to chronic tobacco consumption
Resumo:
Toxoplasma gondii and Trypanosoma cruzi are intracellular parasites which, as part of their life cycle, induce a potent cell-mediated immunity (CMI) maintained by Th1 lymphocytes and IFN-g. In both cases, induction of a strong CMI is thought to protect the host against rapid parasite multiplication and consequent pathology and lethality during the acute phase of infection. However, the parasitic infection is not eliminated by the immune system and the vertebrate host serves as a parasite reservoir. In contrast, Leishmania sp, which is a slow growing parasite, appears to evade induction of CMI during early stages of infection as a strategy for surviving in a hostile environment (i.e., inside the macrophages which are their obligatory niche in the vertebrate host). Recent reports show that the initiation of IL-12 synthesis by macrophages during these parasitic infections is a key event in regulating CMI and disease outcome. The studies reviewed here indicate that activation/inhibition of distinct signaling pathways and certain macrophage functions by intracellular protozoa are important events in inducing/modulating the immune response of their vertebrate hosts, allowing parasite and host survival and therefore maintaining parasite life cycles.
Resumo:
Resistance to Trypanosoma cruzi infections is critically dependent on cytokine-mediated activation of cell-mediated immune effector mechanisms. This review focuses on the role of IL-10, TNF-a, IFN-g and IL-12 in controlling T. cruzi replication by the innate and specific immune systems of the vertebrate host. A study performed on mice with disrupted recombinase-activating genes (RAG/KO), which lack T and B lymphocytes, revealed the importance of IL-12, IFN-g and TNF-a in the resistance against T. cruzi mediated by the innate immune system. In addition, data from experiments using IL-10 KO, RAG/KO and double RAG/IL-10 KO mice indicating an in vivo regulatory role of IL-10 in innate and T. cruzi-specific immunity are discussed
Resumo:
Vaccination of mice with radiation-attenuated cercariae of Schistosoma mansoni induces a high level of protection against challenge with normal larvae. The immune effector mechanism, which operates in the lungs, is a cell-mediated delayed-type hypersensitivity response and involves the formation of a tight focus of mononuclear cells around embolised larvae. CD4+ T cells with Th1 characteristics are a major component of the infiltrate. They secrete abundant interferon gamma (IFNg) upon antigen stimulation in vitro, whilst in vivo neutralisation of the cytokine results in 90% abrogation of immunity. IFNg can induce a large number of genes and an attempt has been made to identify the ones which are essential components of the effector mechanism. Inducible nitric oxide synthase (iNOS) is such a candidate and nitric oxide (NO) is produced by cultures of airway leucocytes from the lungs of vaccinated mice post-challenge. However, the continued resistance of mice with a disrupted iNOS gene indicates that NO has only a minor role in the protective response. Mice with a disrupted IFNg receptor gene have been used to dissect the role of the cytokine. After vaccination and challenge, CD4+ T cells from the pulmonary interstitium have reduced levels of ICAM-1 and LFA-1 expression, compared to wild-type animals, which coincides with a reduced cohesiveness of foci. However, immunity is not significantly impaired in mice with a disrupted ICAM-1 gene, and focus formation is normal. Similarly, a role has not been found for CD2/CD48 interactions in cell aggregation. Possible IFNg-inducible molecules yet to be fully investigated include other ligand-receptor pairs, chemokines, and tumour necrosis factor a.
Resumo:
The attenuated vaccine against Schistosoma mansoni induces Th1-mediated protective immunity and we have sought to identify a role for IL-12 in this model. Elevated levels of IL-12 (p40 mRNA) were detected in the lymph nodes (LN) and the lungs of vaccinated mice, whilst treatment of vaccinated mice with anti-IL-12 antibodies decreased the ratio of IFNg:IL-4 secreted by in vitro-cultured LN cells. However, there was only marginal abrogation of the level of resistance in these mice. Soluble antigens from the lung-stage of the parasite (SLAP) appeared to be efficient stimulators of IFNg and IL-12 secretion. These antigens when used to immunise mice in conjunction with IL-12 as an adjuvant, elicited a polarised Th1 response with abundant IFNg secretion but no IL-4. This immunisation regime also induced significant protection against reinfection, whereas inoculation of mice with SLAP alone did not. The induction of a dominant Th1 response using SLAP + IL-12 probably operates via IFNg production by natural killer (NK) cells stimulated by IL-12, since in vivo ablation of NK cells using anti-NK1.1 antibody reduced CD4+-dependent IFNg production from cultured LN cells by over 97%. Nevertheless, in mice with a genetic disruption of the IFNg receptor, administration of SLAP + IL-12 induced levels of IFNg equal to those in wild-type mice, thus showing that in this model IL-12 can directly prime T cells independent of IFNg. Clearly, IL-12 has a critical role in protective immunity to schistosomes and it may aid the development of an effective vaccine against this disease
Resumo:
Leishmaniasis is a disease caused by protozoa of the genus Leishmania, and visceral leishmaniasis is a form in which the inner organs are affected. Since knowledge about immunity in experimental visceral leishmaniasis is poor, we present here a review on immunity and immunosuppression in experimental visceral leishmaniasis in mouse and hamster models. We show the complexity of the mechanisms involved and differences when compared with the cutaneous form of leishmaniasis. Resistance in visceral leishmaniasis involves both CD4+ and CD8+ T cells, and interleukin (IL)-2, interferon (IFN)- gamma, and IL-12, the latter in a mechanism independent of IFN- gamma and linked to transforming growth factor (TGF)-ß production. Susceptibility involves IL-10 but not IL-4, and B cells. In immune animals, upon re-infection, the elements involved in resistance are different, i.e., CD8+ T cells and IL-2. Since one of the immunopathological consequences of active visceral leishmaniasis in humans is suppression of T-cell responses, many studies have been conducted using experimental models. Immunosuppression is mainly Leishmania antigen specific, and T cells, Th2 cells and adherent antigen-presenting cells have been shown to be involved. Interactions of the co-stimulatory molecule family B7-CTLA-4 leading to increased level of TGF-ß as well as apoptosis of CD4+ T cells and inhibition of macrophage apoptosis by Leishmania infection are other components participating in immunosuppression. A better understanding of this complex immune response and the mechanisms of immunosuppression in experimental visceral leishmaniasis will contribute to the study of human disease and to vaccine development.
Resumo:
The aim of the present study was to determine the effect of stretching applied every 3 days to the soleus muscle immobilized in the shortened position on muscle fiber morphology. Eighteen 16-week-old Wistar rats were used and divided into three groups of 6 animals each: a) the left soleus muscle was immobilized in the shortened position for 3 weeks; b) during immobilization, the soleus was stretched for 40 min every 3 days; c) the non-immobilized soleus was only stretched. Left and right soleus muscles were examined. One portion of the soleus was frozen for histology and muscle fiber area evaluation, while the other portion was used to identify the number and length of serial sarcomeres. Immobilized muscles (group A) showed a significant decrease in weight (44 ± 6%), length (19 ± 7%), serial sarcomere number (23 ± 15%), and fiber area (37 ± 31%) compared to the contralateral muscles (P < 0.05, paired Student t-test). The immobilized and stretched soleus (group B) showed a similar reduction but milder muscle fiber atrophy compared to the only immobilized group (22 ± 40 vs 37 ± 31%, respectively; P < 0.001, ANOVA test). Muscles submitted only to stretching (group C) significantly increased the length (5 ± 2%), serial sarcomere number (4 ± 4%), and fiber area (16 ± 44%) compared to the contralateral muscles (P < 0.05, paired Student t-test). In conclusion, stretching applied every 3 days to immobilized muscles did not prevent the muscle shortening, but reduced muscle atrophy. Stretching sessions induced hypertrophic effects in the control muscles. These results support the use of muscle stretching in sports and rehabilitation.
Resumo:
Two different levels of control for bone marrow hematopoiesis are believed to exist. On the one hand, normal blood cell distribution is believed to be maintained in healthy subjects by an "innate" hematopoietic activity, i.e., a basal intrinsic bone marrow activity. On the other hand, an "adaptive" hematopoietic state develops in response to stress-induced stimulation. This adaptive hematopoiesis targets specific lineage amplification depending on the nature of the stimuli. Unexpectedly, recent data have shown that what we call "normal hematopoiesis" is a stress-induced state maintained by activated bone marrow CD4+ T cells. This T cell population includes a large number of recently stimulated cells in normal mice whose priming requires the presence of the cognate antigens. In the absence of CD4+ T cells or their cognate antigens, hematopoiesis is maintained at low levels. In this review, we summarize current knowledge on T cell biology, which could explain how CD4+ T cells can help hematopoiesis, how they are primed in mice that were not intentionally immunized, and what maintains them activated in the bone marrow.
Resumo:
Epidemiological data regarding tetanus and diphtheria immunity in elderly people in Brazil are scarce. During the First National Immunization Campaign for the Elderly in Brazil in April 1999, 98 individuals (median age: 84 years) received one tetanus-dyphtheria (Td) vaccine dose (Butantan Institute, lot number 9808079/G). Inclusion criteria were elderly individuals without a history of severe immunosuppressive disease, acute infectious disease or use of immunomodulators. Blood samples were collected immediately before the vaccine and 30 days later. Serum was separated and stored at -20ºC until analysis. Tetanus and diphtheria antibodies were measured by the double-antigen ELISA test. Tetanus and diphtheria antibody concentrations lower than 0.01 IU/mL were considered to indicate the absence of protection, between 0.01 and 0.09 IU/mL were considered to indicate basic immunity, and values of 0.1 IU/mL or higher were considered to indicate full protection. Before vaccination, 18% of the individuals were susceptible to diphtheria and 94% were susceptible to tetanus. After one Td dose, 78% became fully immune to diphtheria, 13% attained basic immunity, and 9% were still susceptible to the disease. In contrast, 79% remained susceptible to tetanus, 4% had basic immunity and 17% were fully immune. Although one Td dose increases immunity to diphtheria in many elderly people who live in Brazil, a complete vaccination series appears to be necessary for the prevention of tetanus.
Resumo:
Tetanus and diphtheria vaccines are of special concern in adolescents because boosters are necessary for adequate maintenance of protection and are often omitted. We assessed serum levels of tetanus and diphtheria antibodies in adolescents and their association with vaccination status. From May to October 2001, we evaluated the vaccination records of 208 adolescents aged 10 to 20 years in São Paulo, Brazil. Antibodies to tetanus and diphtheria were detected using double-antigen ELISA and vaccination records were analyzed according to the guidelines of the Brazilian National Immunization Program. All adolescents had received complete primary vaccinations against tetanus and diphtheria, but 23.1% of them had not received a booster dose in the last 10 years. All adolescents were immune to tetanus and 88.9% were fully protected (antibodies ³0.1 IU/mL). One individual (0.5%) was non-immune to diphtheria and 86% were fully protected against the disease. Adolescents with up-to-date vaccination records had higher antibody levels than those with not up-to-date records for tetanus (0.763 vs 0.239 IU/mL, t-test: P < 0.0001) and diphtheria (0.366 vs 0.233 IU/mL, t-test: P = 0.014). Full immunity against tetanus (antibodies ³0.1 IU/mL) was higher among individuals with up-to-date vaccination (93.1%) when compared to those with not up-to-date records (75%, Fisher's exact test: P = 0.001). All adolescents had received basic immunization in childhood and were protected against tetanus and diphtheria. However, these data indicate that more emphasis should be placed on the tetanus-diphtheria booster in order to avoid a decay in antibody levels.
Resumo:
Since the times preceding the Second World War the subject of aircraft tracking has been a core interest to both military and non-military aviation. During subsequent years both technology and configuration of the radars allowed the users to deploy it in numerous fields, such as over-the-horizon radar, ballistic missile early warning systems or forward scatter fences. The latter one was arranged in a bistatic configuration. The bistatic radar has continuously re-emerged over the last eighty years for its intriguing capabilities and challenging configuration and formulation. The bistatic radar arrangement is used as the basis of all the analyzes presented in this work. The aircraft tracking method of VHF Doppler-only information, developed in the first part of this study, is solely based on Doppler frequency readings in relation to time instances of their appearance. The corresponding inverse problem is solved by utilising a multistatic radar scenario with two receivers and one transmitter and using their frequency readings as a base for aircraft trajectory estimation. The quality of the resulting trajectory is then compared with ground-truth information based on ADS-B data. The second part of the study deals with the developement of a method for instantaneous Doppler curve extraction from within a VHF time-frequency representation of the transmitted signal, with a three receivers and one transmitter configuration, based on a priori knowledge of the probability density function of the first order derivative of the Doppler shift, and on a system of blocks for identifying, classifying and predicting the Doppler signal. The extraction capabilities of this set-up are tested with a recorded TV signal and simulated synthetic spectrograms. Further analyzes are devoted to more comprehensive testing of the capabilities of the extraction method. Besides testing the method, the classification of aircraft is performed on the extracted Bistatic Radar Cross Section profiles and the correlation between them for different types of aircraft. In order to properly estimate the profiles, the ADS-B aircraft location information is adjusted based on extracted Doppler frequency and then used for Bistatic Radar Cross Section estimation. The classification is based on seven types of aircraft grouped by their size into three classes.
Resumo:
The aim of the present study was to determine whether training-related alterations in muscle mechanoreflex activation affect cardiac vagal withdrawal at the onset of exercise. Eighteen male volunteers divided into 9 controls (26 ± 1.9 years) and 9 racket players (25 ± 1.9 years) performed 10 s of voluntary and passive movement characterized by the wrist flexion of their dominant and non-dominant limbs. The respiratory cycle was divided into four phases and the phase 4 R-R interval was measured before and immediately following the initiation of either voluntary or passive movement. At the onset of voluntary exercise, the decrease in R-R interval was similar between dominant and non-dominant forearms in both controls (166 ± 20 vs 180 ± 34 ms, respectively; P > 0.05) and racket players (202 ± 29 vs 201 ± 31 ms, respectively; P > 0.05). Following passive movement, the non-dominant forearm of racket players elicited greater changes than the dominant forearm (129 ± 30 vs 77 ± 17 ms; P < 0.05), as well as both the dominant (54 ± 20 ms; P < 0.05) and non-dominant (59 ± 14 ms; P < 0.05) forearms of control subjects. In contrast, changes in R-R interval elicited by the racket players' dominant forearm were similar to that observed in the control group, indicating that changes in R-R interval at the onset of passive exercise were not attenuated in the dominant forearm of racket players. In summary, cardiac vagal withdrawal induced by muscle mechanoreflex stimulation is well-maintained, despite long-term exposure to training.
Resumo:
Recurrent aphthous ulcer (RAU) is an inflammatory condition of the oral mucosa characterized by painful, well-circumscribed, single or multiple round or ovoid ulcerations. The exact etiologic factor(s) of these ulcerations are not yet understood. The objective of this study was to evaluate inflammatory processes and free radical metabolism of 25 patients with RAUs compared to 25 healthy controls. The levels of malondialdehyde (MDA) and glutathione (GSH) were determined by high-performance liquid chromatography. Tumor necrosis factor-alpha (TNF-α), interleukin-2 (IL-2), IL-10, and IL-12 were determined by ELISA. Nitric oxide (NO), myeloperoxidase (MPO), total antioxidant status (TAS), and total oxidant status (TOS) levels were measured spectroscopically in serum. The levels of MDA, GSH, TNF-α, IL-2, IL-12, MPO, and TOS, and oxidative stress index (OSI) were higher, and the levels of NO, IL-10, and TAS were lower in patients with RAU than in controls. Statistical analysis showed that GSH, TNF-α, IL-2, IL-10, and OSI differed significantly in patients with RAU compared to controls. These parameters have important roles in oxidant/antioxidant defense.
Resumo:
Extracellular matrix and costamere proteins transmit the concentric, isometric, and eccentric forces produced by active muscle contraction. The expression of these proteins after application of passive tension stimuli to muscle remains unknown. This study investigated the expression of laminin and dystrophin in the soleus muscle of rats immobilized with the right ankle in plantar flexion for 10 days and subsequent remobilization, either by isolated free movement in a cage or associated with passive stretching for up to 10 days. The intensity of the macrophage response was also evaluated. One hundred and twenty-eight female Wistar rats were divided into 8 groups: free for 10 days; immobilized for 10 days; immobilized/free for 1, 3, or 10 days; or immobilized/stretched/free for 1, 3, or 10 days. After the experimental procedures, muscle tissue was processed for immunofluorescence (dystrophin/laminin/CD68) and Western blot analysis (dystrophin/laminin). Immobilization increased the expression of dystrophin and laminin but did not alter the number of macrophages in the muscle. In the stretched muscle groups, there was an increase in dystrophin and the number of macrophages after 3 days compared with the other groups; dystrophin showed a discontinuous labeling pattern, and laminin was found in the intracellular space. The amount of laminin was increased in the muscles treated by immobilization followed by free movement for 10 days. In the initial stages of postimmobilization (1 and 3 days), an exacerbated macrophage response and an increase of dystrophin suggested that the therapeutic stretching technique induced additional stress in the muscle fibers and costameres.