950 resultados para Passaic County (N.J.)--Maps.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Without knowledge of basic seafloor characteristics, the ability to address any number of critical marine and/or coastal management issues is diminished. For example, management and conservation of essential fish habitat (EFH), a requirement mandated by federally guided fishery management plans (FMPs), requires among other things a description of habitats for federally managed species. Although the list of attributes important to habitat are numerous, the ability to efficiently and effectively describe many, and especially at the scales required, does not exist with the tools currently available. However, several characteristics of seafloor morphology are readily obtainable at multiple scales and can serve as useful descriptors of habitat. Recent advancements in acoustic technology, such as multibeam echosounding (MBES), can provide remote indication of surficial sediment properties such as texture, hardness, or roughness, and further permit highly detailed renderings of seafloor morphology. With acoustic-based surveys providing a relatively efficient method for data acquisition, there exists a need for efficient and reproducible automated segmentation routines to process the data. Using MBES data collected by the Olympic Coast National Marine Sanctuary (OCNMS), and through a contracted seafloor survey, we expanded on the techniques of Cutter et al. (2003) to describe an objective repeatable process that uses parameterized local Fourier histogram (LFH) texture features to automate segmentation of surficial sediments from acoustic imagery using a maximum likelihood decision rule. Sonar signatures and classification performance were evaluated using video imagery obtained from a towed camera sled. Segmented raster images were converted to polygon features and attributed using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999) for use in a geographical information system (GIS). (PDF contains 41 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This document presents the results of the first two monitoring events to track the recovery of a repaired coral reef injured by the M/V Wellwood vessel grounding incident of August 4, 1984. This grounding occurred within the boundaries of what at the time was designated the Key Largo National Marine Sanctuary (NMS), now designated the Key Largo NMS Existing Management Area within the Florida Keys National Marine Sanctuary (FKNMS). Pursuant to the National Marine Sanctuaries Act (NMSA) 16 U.S.C. 1431 et seq., and the Florida Keys National Marine Sanctuary and Protection Act (FKNMSPA) of 1990, NOAA is the federal trustee for the natural and cultural resources of the FKNMS. Under Section 312 of the NMSA, NOAA has the authority to recover monetary damages for injury, destruction, or loss of Sanctuary resources, and to use the recovered monies to restore injured or lost sanctuary resources within the FKNMS. The restoration monitoring program tracks patterns of biological recovery, determines the success of restoration measures, and assesses the resiliency to environmental and anthropogenic disturbances of the site over time. To evaluate restoration success, reference habitats adjacent to the restoration site are concurrently monitored to compare the condition of restored reef areas with “natural” coral reef areas unimpacted by the vessel grounding or other injury. Restoration of the site was completed on July 22, 2002, and thus far two monitoring events have occurred; one in the Fall of 2004, and one in the Summer/Fall of 2006. The monitoring has consisted of: assessment of the structural stability of restoration modules and comparison of the coral recruitment conditions of the modules and reference sites. Corals are divided into Gorgonians, Milleporans, and Scleractinians and (except where noted) recruits are defined as follows: Gorgonians—maximum size (height) 150 mm at first monitoring event, 270 mm at second; Milleporans—maximum size (height) 65 mm at first event, 125 mm at second; Scleractinians—maximum size (greatest diameter) 50 mm at second event (only one species was size-classed at first event, at smaller size). Recruit densities at the restored and reference areas for each event are compared, as are size-class frequency distributions. For the Scleractinians, number and percentage of recruits by species, as well as several common biodiversity indices are provided. Finally, a qualitative comparison of recruit substrate settlement preference is indicated. Generally, results indicate that restored areas are converging on reference areas, based on almost all parameters examined, with one noted exception. Further monitoring is planned and the trends are anticipated to continue; close attention will be paid to the indicated anomaly. (PDF contains 63 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This document presents the results of the monitoring of a repaired coral reef injured by the M/V Connected vessel grounding incident of March 27, 2001. This grounding occurred in Florida state waters within the boundaries of the Florida Keys National Marine Sanctuary (FKNMS). The National Oceanic and Atmospheric Administration (NOAA) and the Board of Trustees of the Internal Improvement Trust Fund of the State of Florida, (“State of Florida” or “state”) are the co-trustees for the natural resources within the FKNMS and, thus, are responsible for mediating the restoration of the damaged marine resources and monitoring the outcome of the restoration actions. The restoration monitoring program tracks patterns of biological recovery, determines the success of restoration measures, and assesses the resiliency to environmental and anthropogenic disturbances of the site over time. The monitoring program at the Connected site was to have included an assessment of the structural stability of installed restoration modules and biological condition of reattached corals performed on the following schedule: immediately (i.e., baseline), 1, 3, and 6 years after restoration and following a catastrophic event. Restoration of this site was completed on July 20, 2001. Due to unavoidable delays in the settlement of the case, the “baseline” monitoring event for this site occurred in July 2004. The catastrophic monitoring event occurred on August 31, 2004, some 2 ½ weeks after the passage of Hurricane Charley which passed nearby, almost directly over the Dry Tortugas. In September 2005, the year one monitoring event occurred shortly after the passage of Hurricane Katrina, some 70 km to the NW. This report presents the results of all three monitoring events. (PDF contains 37 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This document presents the results of the monitoring of a repaired coral reef injured by the M/V Jacquelyn L vessel grounding incident of July 7, 1991. This grounding occurred in Florida state waters within the boundaries of the Florida Keys National Marine Sanctuary (FKNMS). The National Oceanic and Atmospheric Administration (NOAA) and the Board of Trustees of the Internal Improvement Trust Fund of the State of Florida, (“State of Florida” or “state”) are the co-trustees for the natural resources within the FKNMS and, thus, are responsible for mediating the restoration of the damaged marine resources and monitoring the outcome of the restoration actions. The restoration monitoring program tracks patterns of biological recovery, determines the success of restoration measures, and assesses the resiliency to environmental and anthropogenic disturbances of the site over time. The monitoring program at the Jacquelyn L site was to have included an assessment of the structural stability of installed restoration modules and biological condition of reattached corals performed on the following schedule: immediately (i.e., baseline), 1, 3, and 6 years after restoration and following a catastrophic event. Restoration of this site was completed on July 20, 2000. Due to unavoidable delays in the settlement of the case, the “baseline” monitoring event for this site occurred in July 2004. The catastrophic monitoring event occurred on August 31, 2004, some 2 ½ weeks after the passage of Hurricane Charley which passed nearby, almost directly over the Dry Tortugas. In September 2005, the year one monitoring event occurred shortly after the passage of Hurricane Katrina, some 70 km to the NW. This report presents the results of all three monitoring events. (PDF contains 31 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This document presents the results of baseline monitoring of a repaired coral reef injured by the M/V Wave Walker vessel grounding incident of January 19, 2001. This grounding occurred in Florida state waters within the boundaries of the Florida Keys National Marine Sanctuary (FKNMS). The National Oceanic and Atmospheric Administration (NOAA) and the Board of Trustees of the Internal Improvement Trust Fund of the State of Florida, (“State of Florida” or “state”) are the co-trustees for the natural resources within the FKNMS. This report documents the efficacy of the restoration effort, the condition of the restored reef area two year and four months post-effort, and provides a picture of surrounding reference areas, so as to provide a basis for future comparisons by which to evaluate the long-term success of the restoration. (PDF contains 25 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resulted from a occasional field trips on the Patuxent River, 1964-1968. Taxonomy and ecology survey following the quarter method (Cottam and Curtis, 1956) Includes: Literature review: Forests, soils, ecology; Materials and Methods: location, criteria, map of Calvert county; Results: descriptive, species of trees sampled; soils, ecology; discussion: vegetational, soils, ecology; Summary; Climate; Physical features of Calvert County; Botanical descriptions; Tables, Current checklist of vascular plants; selective bibliography

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EXECUTIVE SUMMARY: The Coastal Change Analysis Programl (C-CAP) is developing a nationally standardized database on landcover and habitat change in the coastal regions of the United States. C-CAP is part of the Estuarine Habitat Program (EHP) of NOAA's Coastal Ocean Program (COP). C-CAP inventories coastal submersed habitats, wetland habitats, and adjacent uplands and monitors changes in these habitats on a one- to five-year cycle. This type of information and frequency of detection are required to improve scientific understanding of the linkages of coastal and submersed wetland habitats with adjacent uplands and with the distribution, abundance, and health of living marine resources. The monitoring cycle will vary according to the rate and magnitude of change in each geographic region. Satellite imagery (primarily Landsat Thematic Mapper), aerial photography, and field data are interpreted, classified, analyzed, and integrated with other digital data in a geographic information system (GIS). The resulting landcover change databases are disseminated in digital form for use by anyone wishing to conduct geographic analysis in the completed regions. C-CAP spatial information on coastal change will be input to EHP conceptual and predictive models to support coastal resource policy planning and analysis. CCAP products will include 1) spatially registered digital databases and images, 2) tabular summaries by state, county, and hydrologic unit, and 3) documentation. Aggregations to larger areas (representing habitats, wildlife refuges, or management districts) will be provided on a case-by-case basis. Ongoing C-CAP research will continue to explore techniques for remote determination of biomass, productivity, and functional status of wetlands and will evaluate new technologies (e.g. remote sensor systems, global positioning systems, image processing algorithms) as they become available. Selected hardcopy land-cover change maps will be produced at local (1:24,000) to regional scales (1:500,000) for distribution. Digital land-cover change data will be provided to users for the cost of reproduction. Much of the guidance contained in this document was developed through a series of professional workshops and interagency meetings that focused on a) coastal wetlands and uplands; b) coastal submersed habitat including aquatic beds; c) user needs; d) regional issues; e) classification schemes; f) change detection techniques; and g) data quality. Invited participants included technical and regional experts and representatives of key State and Federal organizations. Coastal habitat managers and researchers were given an opportunity for review and comment. This document summarizes C-CAP protocols and procedures that are to be used by scientists throughout the United States to develop consistent and reliable coastal change information for input to the C-CAP nationwide database. It also provides useful guidelines for contributors working on related projects. It is considered a working document subject to periodic review and revision.(PDF file contains 104 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Historical definitions of what determines whether one lives in a coastal area or not have varied over time. According to Culliton (1998), a “coastal county” is defined as a county with at least 15% of its total land area located within a nation’s coastal watershed. This emphasizes the land areas within which water flows into the ocean or Great Lakes, but may be better suited for ecosystems or water quality research (Crowell et al. 2007). Some Federal Emergency Management Agency (FEMA) documents suggest that “coastal” includes shoreline-adjacent coastal counties, and perhaps even counties impacted by flooding from coastal storms. An accurate definition of “coastal” is critical in this regard since FEMA uses such definitions to revise and modernize their Flood Insurance Rate Maps (Crowell et al. 2007). A recent map published by the National Oceanic and Atmospheric Administration’s (NOAA) Coastal Services Center for the Coastal Change Analysis Program shows that the “coastal” boundary covers the entire state of New York and Michigan, while nearly all of South Carolina is considered “coastal.” The definition of “coastal” one chooses can have major implications, including a simple count of coastal population and the influence of local or state coastal policies. There is, however, one aspect of defining what is “coastal” that has often been overlooked; using atmospheric long-term climate variables to define the inland extent of the coastal zone. This definition, which incorporates temperature, precipitation, wind speed, and relative humidity, is furthermore scalable and globally applicable - even in the face of shifting shorelines. A robust definition using common climate variables should condense the large broad definition often associated with “coastal” such that completely landlocked locations would no longer be considered “coastal.” Moreover, the resulting definition, “coastal climate” or “climatology of the coast”, will help coastal resource managers make better-informed decisions on a wide range of climatologically-influenced issues. The following sections outline the methodology employed to derive some new maps of coastal boundaries in the United States. (PDF contains 3 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While New Hanover County is the second smallest county in North Carolina, it is also the second most densely populated with approximately 850 people per square mile. Nestled between the Cape Fear River and Atlantic Ocean with surrounding barrier island beach communities, the County’s geographic location provides a prime vacation destination, as well as an ideal location for residents who wish to live at the water’s edge. Wilmington is the largest city in the County with a population just under 200,000. Most of the Wilmington metropolitan area is developed, creating intense development pressures for the remaining undeveloped land in the unincorporated County. In order to provide development opportunities for mixed use or high density projects within unincorporated New Hanover County where appropriate urban features are in place to support such projects without the negative effects of urban sprawl, County Planning Staff recently developed an Exceptional Design Zoning District (EDZD). Largely based on the LEED for Neighborhood Development program, the EDZD standards were scaled to fit the unique conditions of the County with the goal of encouraging sustainable development while providing density incentives to entice the use of the voluntary district. The incentive for the voluntary zoning district is increased density in areas where the density may not be allowed under normal circumstances. The rationale behind allowing for higher density projects is that development can be concentrated in areas where appropriate urban features are in place to support such projects, and the tendency toward urban sprawl can be minimized. With water quality being of high importance, it is perceived that higher density development will better protect water quality then lower density projects. (PDF contains 4 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Johnny Lyon Hills area is located in Cochise County in southeastern Arizona. The rocks of the area include a central core of Lower pre-Cambrian igneous and metamorphic rocks surrounded by a complexly faulted and tilted section of Upper pre-Cambrian and Paleozoic strata. Limited exposures of Mesozoic and Tertiary sedimentary and volcanic rocks are present at the north end of the map area. Late Tertiary and Quaternary alluvium almost completely surrounds and overlaps upon the older rocks.

The older pre-Cambrian rocks include a section of more than 9000 feet of generally moderately metamorphosed graywackes, slates and conglomerates of the Pinal schist injected in zones by somewhat younger rnyolite sheets. The original sediments were deposited in a geosyncline whose extent probably included large parts of Arizona, New Mexico and west Texas. During the Mazatzal Revolution the Pinal schist was deformed into northeast-trending, steeply dipping and plunging structures and the entire local section was overturned steeply toward the northwest. The pre-Cambrian Johnny Lyon granodiorite was emplaced as a large epi-tectonic pluton which modified the metamorphic character of part of the Pinal schist. Larsen method determinations indicate an age of about 715 million years for this rock, which is about the minimum age compatible with the geologic relations.

The Laramide orogeny produced numerous major thrust faults in the area involving all rocks older than and including the Lower Cretaceous Bisbee group. Major compression from the southwest and subsequent superimposed thrusting from the southeast and east are indicated. Minimum thrust displacements of more than a mile are clear and the probable displacements are of much greater magnitude. The crystalline core behaved as a single structural unit and probably caused important local divergences from the regional pattern of northeast-trending compressive forces. The massif was rotated as a unit 40 degrees or more about a northwest-trending axis overturning the pre-Cambrian fold axes in the Pinal schist.

Swarms of Late Cretaceous(?) or Early Tertiary(?) lamprophyric dikes cross the Laramide structures and are probably related to the large Texas Canyon stock several miles southeast of the map area. Intermittent high angle faulting, both older and younger than the dikes, has continued since the Laramide orogeny and has been superimposed on the older structures. This steep faulting combined with the fundamental northwesterly Laramide structural grain to produce the northwesterly trends characteristic of the mountain ridges and valleys of the area.