960 resultados para Pancreatic enzymes
Resumo:
This study was designed to evaluate the effect of different conditions of collection, transport and storage on the quality of blood samples from normal individuals in terms of the activity of the enzymes ß-glucuronidase, total hexosaminidase, hexosaminidase A, arylsulfatase A and ß-galactosidase. The enzyme activities were not affected by the different materials used for collection (plastic syringes or vacuum glass tubes). In the evaluation of different heparin concentrations (10% heparin, 5% heparin, and heparinized syringe) in the syringes, it was observed that higher doses resulted in an increase of at least 1-fold in the activities of ß-galactosidase, total hexosaminidase and hexosaminidase A in leukocytes, and ß-glucuronidase in plasma. When the effects of time and means of transportation were studied, samples that had been kept at room temperature showed higher deterioration with time (72 and 96 h) before processing, and in this case it was impossible to isolate leukocytes from most samples. Comparison of heparin and acid citrate-dextrose (ACD) as anticoagulants revealed that ß-glucuronidase and hexosaminidase activities in plasma reached levels near the lower normal limits when ACD was used. In conclusion, we observed that heparin should be used as the preferable anticoagulant when measuring these lysosomal enzyme activities, and we recommend that, when transport time is more than 24 h, samples should be shipped by air in a styrofoam box containing wet ice.
Resumo:
In most of cells bradykinin (BK) induces intracellular calcium mobilization. In pancreatic beta cells intracellular calcium is a major signal for insulin secretion. In these cells, glucose metabolism yields intracellular ATP which blocks membrane potassium channels. The membrane depolarizes, voltage-dependent Ca2+ channels are activated and the intracellular calcium load allows insulin secretion. Repolarization occurs due to activation of the Ca2+-dependent K+ channel. The insulin secretion depends on the integrity of this oscillatory process (bursts). Therefore, we decided to determine whether BK (100 nM) induces bursts in the presence of a non-stimulatory glucose concentration (5.6 mM). During continuous membrane voltage recording, our results showed that bursts were obtained with 11 mM glucose, blocked with 5.6 mM glucose and recovered with 5.6 mM glucose plus 100 nM BK. Thus, the stimulatory process obtained in the presence of BK and of a non-stimulatory concentration of glucose in the present study suggests that BK may facilitate the action of glucose on beta cell secretion.
Resumo:
This article describes the presence of two new forms of a thrombin-like enzyme, both with apparent molecular masses of 38 kDa, in Bothrops atrox venom. Both share the ability to cleave fibrinogen into fibrin and to digest casein. Both present identical Km on the substrate BApNA. Their N-terminal amino acid sequences are identical for 26 residues, sharing 80% homology with batroxobin and flavoxobin. Two groups of monoclonal antibodies (mAbs) raised against the purified enzyme forms recognized different epitopes of the putative corresponding enzymes present in B. atrox crude venom. On Western blotting analysis of B. atrox crude venom, mAbs 5DB2C8, 5AA10 and 5CF11, but not mAbs 6CC5 and 6AD2-G5, revealed two or more protein bands ranging from 25 to 38 kDa. By immunoprecipitation assays, the 6AD2-G5 mAb was able to precipitate protein bands of 36-38 kDa from B. atrox, B. leucurus, B. pradoi, B. moojeni, B. jararaca and B. neuwiedii crude venoms. Fibrinogen-clotting activity was inhibited when the same venom specimens were pre-incubated with mAb 6AD2-G5, except for B. jararaca and B. neuwiedii.
Resumo:
The objective of the present study was to explore the regulatory mechanisms of free radicals during streptozotocin (STZ)-induced pancreatic damage, which may involve nitric oxide (NO) production as a modulator of cellular oxidative stress. Removal of oxygen species by incubating pancreatic tissues in the presence of polyethylene glycol-conjugated superoxide dismutase (PEG-SOD) (1 U/ml) produced a decrease in nitrite levels (42%) and NO synthase (NOS) activity (50%) in diabetic but not in control samples. When NO production was blocked by N G-monomethyl-L-arginine (L-NMMA) (600 µM), SOD activity increased (15.21 ± 1.23 vs 24.40 ± 2.01 U/mg dry weight). The increase was abolished when the NO donor, spermine nonoate, was added to the incubating medium (13.2 ± 1.32). Lipid peroxidation was lower in diabetic tissues when PEG-SOD was added (0.40 ± 0.02 vs 0.20 ± 0.03 nmol/mg protein), and when L-NMMA blocked NOS activity in the incubating medium (0.28 ± 0.05); spermine nonoate (100 µM) abolished the decrease in lipoperoxide level (0.70 ± 0.02). We conclude that removal of oxygen species produces a decrease in pancreatic NO and NOS levels in STZ-treated rats. Moreover, inhibition of NOS activity produces an increase in SOD activity and a decrease in lipoperoxidation in diabetic pancreatic tissues. Oxidative stress and NO pathway are related and seem to modulate each other in acute STZ-induced diabetic pancreas in the rat.
Resumo:
The effects of short-term burst (5 min at 1.8 m/s) swimming and long-term cruiser (60 min at 1.2 m/s) swimming on maximal enzyme activities and enzyme distribution between free and bound states were assessed for nine glycolytic and associated enzymes in tissues of horse mackerel, Trachurus mediterraneus ponticus. The effects of exercise were greatest in white muscle. The activities of phosphofructokinase (PFK), pyruvate kinase (PK), fructose-1,6-bisphosphatase (FBPase), and phosphoglucomutase (PGM) all decreased to 47, 37, 37 and 67%, respectively, during 60-min exercise and all enzymes except phosphoglucoisomerase (PGI) and PGM showed a change in the extent of binding to subcellular particulate fractions during exercise. In red muscle, exercise affected the activities of PGI, FBPase, PFK, and lactate dehydrogenase (LDH) and altered percent binding of only PK and LDH. In liver, exercise increased the PK activity 2.3-fold and reduced PGI 1.7-fold only after 5 min of exercise but altered the percent binding of seven enzymes. Fewer effects were seen in brain, with changes in the activities of aldolase and PGM and in percent binding of hexokinase, PFK and PK. Changes in enzyme activities and in binding interactions with subcellular particulate matter appear to support the altered demands of tissue energy metabolism during exercise.
Resumo:
The effects of an aqueous extract of the plant Scoparia dulcis (200 mg/kg) on the polyol pathway and lipid peroxidation were examined in the liver of streptozotocin adult diabetic male albino Wistar rats. The diabetic control rats (N = 6) presented a significant increase in blood glucose, sorbitol dehydrogenase, glycosylated hemoglobin and lipid peroxidation markers such as thiobarbituric acid reactive substances (TBARS) and hydroperoxides, and a significant decrease in plasma insulin and antioxidant enzymes such as glutathione peroxidase (GPx), glutathione-S-transferase (GST) and reduced glutathione (GSH) compared to normal rats (N = 6). Scoparia dulcis plant extract (SPEt, 200 mg kg-1 day-1) and glibenclamide (600 µg kg-1 day-1), a reference drug, were administered by gavage for 6 weeks to diabetic rats (N = 6 for each group) and significantly reduced blood glucose, sorbitol dehydrogenase, glycosylated hemoglobin, TBARS, and hydroperoxides, and significantly increased plasma insulin, GPx, GST and GSH activities in liver. The effect of the SPEt was compared with that of glibenclamide. The effect of the extract may have been due to the decreased influx of glucose into the polyol pathway leading to increased activities of antioxidant enzymes and plasma insulin and decreased activity of sorbitol dehydrogenase. These results indicate that the SPEt was effective in attenuating hyperglycemia in rats and their susceptibility to oxygen free radicals.
Resumo:
Ureases are enzymes from plants, fungi and bacteria that catalyze the hydrolysis of urea to form ammonia and carbon dioxide. While fungal and plant ureases are homo-oligomers of 90-kDa subunits, bacterial ureases are multimers of two or three subunit complexes. We showed that some isoforms of jack bean urease, canatoxin and the classical urease, bind to glycoconjugates and induce platelet aggregation. Canatoxin also promotes release of histamine from mast cells, insulin from pancreatic cells and neurotransmitters from brain synaptosomes. In vivo it induces rat paw edema and neutrophil chemotaxis. These effects are independent of ureolytic activity and require activation of eicosanoid metabolism and calcium channels. Helicobacter pylori, a Gram-negative bacterium that colonizes the human stomach mucosa, causes gastric ulcers and cancer by a mechanism that is not understood. H. pylori produces factors that damage gastric epithelial cells, such as the vacuolating cytotoxin VacA, the cytotoxin-associated protein CagA, and a urease (up to 10% of bacterial protein) that neutralizes the acidic medium permitting its survival in the stomach. H. pylori whole cells or extracts of its water-soluble proteins promote inflammation, activate neutrophils and induce the release of cytokines. In this paper we review data from the literature suggesting that H. pylori urease displays many of the biological activities observed for jack bean ureases and show that bacterial ureases have a secretagogue effect modulated by eicosanoid metabolites through lipoxygenase pathways. These findings could be relevant to the elucidation of the role of urease in the pathogenesis of the gastrointestinal disease caused by H. pylori.
Resumo:
The effects of schistosomiasis on microsomal enzymes were studied on post-infection day 90 when accumulated damage and fibrosis are most intense but granulomatous reaction around the eggs harbored in the liver is smaller than during the earlier phases. Swiss Webster (SW) and DBA/2 mice of either sex (N = 12 per sex per group) were infected with 100 Schistosoma mansoni cercariae on postnatal day 10 and killed on post-infection day 90. Cytochrome P-450 (CYP) concentration and alkoxyresorufin-O-dealkylases (EROD, MROD, BROD, and PROD), p-nitrophenol-hydroxylase (PNPH), coumarin-7-hydroxylase (COH), and UDP-glucuronosyltransferase (UGT) activities were measured in hepatic microsomes. Age-matched mice of the same sex and strain were used as controls. In S. mansoni-infected mice, CYP1A- and 2B-mediated activities (control = 100%) were reduced in SW (EROD: male (M) 36%, female (F) 38%; MROD: M 38%, F 39%; BROD: M 46%, F 19%; PROD: M 50%, F 28%) and DBA/2 mice (EROD: M 64%, F 58%; MROD: M 60%; BROD: F 49%; PROD: M 73%) while PNPH (CYP2E1) was decreased in SW (M 31%, F 38%) but not in DBA/2 mice. COH did not differ between infected and control DBA/2 and UGT, a phase-2 enzyme, was not altered by infection. In conclusion, chronic S. mansoni infection reduced total CYP content and all CYP-mediated activities evaluated in SW mice, including those catalyzed by CYP2E1 (PNPH), CYP1A (EROD, MROD) and 2B (BROD, PROD). In DBA/2 mice, however, CYP2A5- and 2E1-mediated activities remained unchanged while total CYP content and activities mediated by other CYP isoforms were depressed during chronic schistosomiasis.
Resumo:
Polyketides are a diverse group of natural products produced in many bacteria, fungi and plants. These metabolites have diverse biological activities and several members of this group are in clinical use as antibiotics, anticancer agents, antifungals and immunosuppressants. The different polyketides are produced by polyketide synthases, which catalyze the condensation of extender units into various polyketide scaffolds. After the biosynthesis of the polyketide backbone, more versatility is created to the molecule by tailoring enzymes catalyzing for instance hydroxylations, methylations and glycosylations. Flavoprotein monooxygenases (FPMO) and short-chain alcohol dehydrogenases/reductases (SDR) are two enzyme families that catalyze unusual tailoring reactions in the biosynthesis of natural products. In the experimental section, functions of homologous FPMO and SDR tailoring enzymes from five different angucycline pathways were studied in vitro. The results revealed how different angucyclinones are produced from a common intermediate and that FPMO JadH and SDR LanV are responsible for the divergence of jadomycins and landomycins, respectively, from other angucyclines. Structural studies of these tailoring enzymes revealed differences between homologous enzymes and enabled the use of structure-based protein engineering. Mutagenesis experiments gave important information about the enzymes behind the evolution of distinct angucycline metabolites. These experiments revealed a correlation between the substrate inhibition and bi-functionality in JadH homologue PgaE. In the case of LanV, analysis of mutagenesis results revealed that the difference between the stereospecificities of LanV and its homologues CabV and UrdMred is unexpectedly related to the conformation of the substrate rather than to the structure of the enzyme. Altogether, the results presented here have improved our knowledge about different steps of angucycline biosynthesis and the reaction mechanisms used by the tailoring enzymes behind these steps. This information can hopefully be used to modify these enzymes to produce novel metabolites, which have new biological targets or possess novel modes-of-action. The understanding of these unusual enzyme mechanisms is also interesting to enzymologists outside the field of natural product research.
Resumo:
The pancreatic acinar cell is a classical model for studies of secretion and signal transduction mechanisms. Because of the extensive endoplasmic reticulum and the large granular compartment, it has been possible - by direct measurements - to obtain considerable insights into intracellular Ca2+ handling under both normal and pathological conditions. Recent studies have also revealed important characteristics of stimulus-secretion coupling mechanisms in isolated human pancreatic acinar cells. The acinar cells are potentially dangerous because of the high intra-granular concentration of proteases, which become inappropriately activated in the human disease acute pancreatitis. This disease is due to toxic Ca2+ signals generated by excessive liberation of Ca2+ from both the endoplasmic reticulum and the secretory granules.
Resumo:
A low-protein diet leads to functional and structural pancreatic islet alterations, including islet hypotrophy. Insulin-signaling pathways are involved in several adaptive responses by pancreatic islets. We determined the levels of some insulin-signaling proteins related to pancreatic islet function and growth in malnourished rats. Adult male Wistar rats (N = 20 per group) were fed a 17% protein (normal-protein diet; NP) or 6% protein (low-protein diet; LP), for 8 weeks. At the end of this period, blood glucose and serum insulin and albumin levels were measured. The morphometric parameters of the endocrine pancreas and the content of some proteins in islet lysates were determined. The β-cell mass was significantly reduced (≅65%) in normoglycemic but hypoinsulinemic LP rats compared to NP rats. Associated with these alterations, a significant 30% reduction in insulin receptor substrate-1 and a 70% increase in insulin receptor substrate-2 protein content were observed in LP islets compared to NP islets. The phosphorylated serine-threonine protein kinase (pAkt)/Akt protein ratio was similar in LP and NP islets. The phosphorylated forkhead-O1 (pFoxO1)/FoxO1 protein ratio was decreased by 43% in LP islets compared to NP islets (P < 0.05). Finally, the ratio of phosphorylated-extracellular signal-related kinase 1/2 (pErk1/2) to total Erk1/2 protein levels was decreased by 71% in LP islets compared to NP islets (P < 0.05). Therefore, the reduced β-cell mass observed in LP rats is associated with the reduction of phosphorylation in mitogenic-related signals, FoxO1 and Erk proteins. The cause/effect basis of this association remains to be determined.
Resumo:
Chronic stress is associated with the development of cardiovascular diseases. The sympathoneural system plays an important role in the regulation of cardiac function both in health and disease. In the present study, the changes in gene expression of the catecholamine biosynthetic enzymes tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT) and protein levels in the right and left heart auricles of naive control and long-term (12 weeks) socially isolated rats were investigated by Taqman RT-PCR and Western blot analysis. The response of these animals to additional immobilization stress (2 h) was also examined. Long-term social isolation produced a decrease in TH mRNA level in left auricles (about 70%) compared to the corresponding control. Expression of the DBH gene was markedly decreased both in the right (about 62%) and left (about 81%) auricles compared to the corresponding control, group-maintained rats, whereas PNMT mRNA levels remained unchanged. Exposure of group-housed rats to acute immobilization for 2 h led to a significant increase of mRNA levels of TH (about 267%), DBH (about 37%) and PNMT (about 60%) only in the right auricles. Additional 2-h immobilization of individually housed rats did not affect gene expression of these enzymes in either the right or left auricle. Protein levels of TH, DBH and PNMT in left and right heart auricles were unchanged either in both individually housed and immobilized rats. The unchanged mRNA levels of the enzymes examined after short-term immobilization suggest that the catecholaminergic system of the heart auricles of animals previously exposed to chronic psychosocial stress was adapted to maintain appropriate cardiovascular homeostasis.
Resumo:
C57BL/6 mice develop signs and symptoms comparable, in part, to the human metabolic syndrome. The objective of the present study was to evaluate the effects of exercise training on carbohydrate metabolism, lipid profile, visceral adiposity, pancreatic islet alterations, and nonalcoholic fatty liver disease in C57BL/6 mice. Animals were fed one of two diets during an 8-week period: standard (SC, N = 12) or very high-fat (HF, N = 24) chow. An exercise training protocol (treadmill) was then established and mice were divided into SC and HF sedentary (SC-Sed, HF-Sed), exercised groups (SC-Ex, HF-Ex), or switched from HF to SC (HF/SC-Sed and HF/SC-Ex). HF/HF-Sed mice had the greatest body mass (65% more than SC/SC-Sed; P < 0.0001), and exercise reduced it by 23% (P < 0.0001). Hepatic enzymes ALP (+80%), ALT (+100%) and AST (+70%) were higher in HF/HF mice than in matched SC/SC. Plasma insulin was higher in both the HF/HF-Sed and HF/SC-Sed groups than in the matched exercised groups (+85%; P < 0.001). Pancreatic islets, adipocytes and liver structure were greatly affected by HF, ultimately resulting in islet β-cell hypertrophy and severe liver steatosis. The HF group had larger islets than the SC/SC group (+220%; P < 0.0001), and exercise significantly reduced liver steatosis and islet size in HF. Exercise attenuated all the changes due to HF, and the effects were more pronounced in exercised mice switched from an HF to an SC diet. Exercise improved the lipid profile by reducing body weight gain, visceral adiposity, insulin resistance, islet alterations, and fatty liver, contributing to obesity and steatohepatitis control.
Resumo:
Angiotensin-converting enzymes 1 (ACE1) and 2 (ACE2) are key enzymes of the renin-angiotensin system, which act antagonistically to regulate the levels of angiotensin II (Ang II) and Ang-(1-7). Considerable data show that ACE1 acts on normal skeletal muscle functions and architecture. However, little is known about ACE1 levels in muscles with different fiber compositions. Furthermore, ACE2 levels in skeletal muscle are not known. Therefore, the purpose of this study was to characterize protein expression and ACE1 and ACE2 activities in the soleus and plantaris muscles. Eight-week-old female Wistar rats (N = 8) were killed by decapitation and the muscle tissues harvested for biochemical and molecular analyses. ACE1 and ACE2 activities were investigated by a fluorometric method using Abz-FRK(Dnp)P-OH and Mca-YVADAPK(Dnp)-OH fluorogenic substrates, respectively. ACE1 and ACE2 protein expression was analyzed by Western blot. ACE2 was expressed in the skeletal muscle of rats. There was no difference between the soleus (type I) and plantaris (type II) muscles in terms of ACE2 activity (17.35 ± 1.7 vs 15.09 ± 0.8 uF·min-1·mg-1, respectively) and protein expression. ACE1 activity was higher in the plantaris muscle than in the soleus (71.5 ± 3.9 vs 57.9 ± 1.1 uF·min-1·mg-1, respectively). Moreover, a comparative dose-response curve of protein expression was established in the soleus and plantaris muscles, which indicated higher ACE1 levels in the plantaris muscle. The present findings showed similar ACE2 levels in the soleus and plantaris muscles that might result in a similar Ang II response; however, lower ACE1 levels could attenuate Ang II production and reduce bradykinin degradation in the soleus muscle compared to the plantaris. These effects should enhance the aerobic capacity necessary for oxidative muscle activity.
Resumo:
Current therapy for pancreatic cancer is multimodal, involving surgery and chemotherapy. However, development of pancreatic cancer therapies requires a thorough evaluation of drug efficacy in vitro before animal testing and subsequent clinical trials. Compared to two-dimensional culture of cell monolayer, three-dimensional (3-D) models more closely mimic native tissues, since the tumor microenvironment established in 3-D models often plays a significant role in cancer progression and cellular responses to the drugs. Accumulating evidence has highlighted the benefits of 3-D in vitro models of various cancers. In the present study, we have developed a spheroid-based, 3-D culture of pancreatic cancer cell lines MIAPaCa-2 and PANC-1 for pancreatic drug testing, using the acid phosphatase assay. Drug efficacy testing showed that spheroids had much higher drug resistance than monolayers. This model, which is characteristically reproducible and easy and offers rapid handling, is the preferred choice for filling the gap between monolayer cell cultures and in vivo models in the process of drug development and testing for pancreatic cancer.