990 resultados para PULMONARY FUNCTION
Resumo:
Tumour necrosis factor (TNF)-α has been found to be increased in malnourished chronic obstructive pulmonary disease (COPD) patients; however, the main cause of this phenomenon remains undetermined. In normal subjects, TNF-α production may be induced by dietary energy deprivation. The aim of this study was to investigate if stable COPD patients present alterations of inflammatory mediators after 48 h of dietary energy restriction. Fourteen COPD patients were admitted to the hospital while receiving an experimental diet with an energy content of approximately one-third of their energy needs. Clinical evaluation, nutritional assessment and serum levels of interleukin (IL)-6, TNF-α and C-reactive protein, and secretion of TNF-α by peripheral blood monocytes were assessed on admission and after the experimental diet. For reference values of the laboratory parameters, blood was collected from 10 healthy, elderly subjects. COPD patients showed significantly higher serum concentrations of IL-6 than control subjects, however, the experimental diet was not associated with statistically significant changes in the inflammatory mediators. The findings of this study, although preliminary because of the limited degree and duration of the energy restriction, suggest that the elevated levels of tumour necrosis factor-α, previously described in undernourished or weight-losing chronic obstructive pulmonary disease patients, may not be linked to a decrease of dietary energy intake.
Resumo:
Background: The markers that characterize local and systemic inflammation in chronic obstructive pulmonary disease (COPD) remain unclear, as do their correlations with smoking status and presence of disease. The aim of this study was to assess markers of inflammation in the peripheral blood and airways of current smokers without COPD, of current smokers with COPD and of ex-smokers with COPD. METHODS: In this study, 17 current smokers with COPD (mean age: 58.2 ± 9.6 years; mean forced expiratory volume in 1 second [FEV1]: 56.1 ± 15.9%), 35 ex-smokers with COPD (mean age: 66.3 ± 7.3 years; mean FEV1: 47.9 ± 17.2%) and 20 current smokers without COPD (mean age: 49.1 ± 6.2 years; mean FEV1: 106.5 ± 15.8%) were evaluated. Spirometry findings, body composition and serum/induced sputum concentrations of tumor necrosis factor α (TNF-α), interleukin (IL)-6, IL-8 and IL-10, together with serum C-reactive protein (CRP) levels, were assessed. RESULTS: Serum TNF-α concentration was higher in all current smokers than in ex-smokers with COPD. In current smokers without COPD, serum CRP level was lower than in ex-smokers with COPD and significantly lower than in current smokers with COPD. Sputum TNF-α concentration was higher in current and ex-smokers with COPD than in current smokers without COPD. Multiple regression analyses showed that serum TNF-α was associated with active smoking, and serum CRP and sputum TNF-α were associated with COPD diagnosis. CONCLUSIONS: Smoking is associated with higher systemic inflammation in patients with COPD. Current findings also support the hypothesis that smoking and COPD have different effects on the regulation of airway and systemic inflammatory processes. © 2013 Lippincott Williams and Wilkins.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cardiopulmonary bypass (CPB) is often associated with renal dysfunction, as measured by plasma creatinine levels and hemodialysis rates. Aim. To compare creatinine clearance (CrCl), estimated with the Cockroft and Gault formula, between patients undergoing off-pump coronary artery bypass grafting (OPCAB) versus on-pump CABG (on-CAB). Material and methods. Between April 2008 and April 2009, 119 patients underwent coronary bypass graft surgery. Fifty-eight (58) of these patients underwent OPCAB while 61 had on-CAB. Creatinine clearance, plasma creatinine levels, and clinical outcome were compared between the groups. A creatinine clearance value of 50 mL/minute was accepted as the lowest limit of normal renal function. Results. There were two hospital deaths caused by sepses after pulmonary infection. Creatinine clearance (Preoperative OPCAB 73,64±33,72 x on-CAB 75,70±34,30mL/min; discharge OPCAB 75,73±35,07 x on-CAB 79,07±34,71 mL/ min; p=0,609), and creatinine levels (Preoperative OPCAB 1,04±0,38 x on-CAB 1,13±0,53 mg/dL; discharge OPCAB 1,12±0,79 x on-CAB 1,04±0,29mg/dL; p=0,407) did not show statistically inter-group differences. Conclusion. Deterioration in renal function is associated with higher rates of postoperative complications. No significant difference in CrCl could be demonstrated between the groups.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thrombocytopenia and platelet dysfunction occur in patients bitten by Bothrops sp snakes in Latin America. An experimental model was developed in mice to study the effects of B. asper venom in platelet numbers and function. Intravenous administration of this venom induces rapid and prominent thrombocytopenia and ex vivo platelet hypoaggregation. The drop in platelet numbers was primarily due to aspercetin, a protein of the C-type lectin family which induces von Willebrand factor-mediated platelet aggregation/agglutination. In addition, the effect of class P-III hemorrhagic metalloproteinases on the microvessel wall also contributes to thrombocytopenia since jararhagin, a P-III metalloproteinase, reduced platelet counts. Hypoaggregation was associated with the action of procoagulant and defibrin(ogen)ating proteinases jararacussin-1 (a thrombin-like serine proteinase) and basparin A (a prothrombin activating metalloproteinase). At the doses which induced hypoaggregation, these enzymes caused defibrin(ogen)ation, increments in fibrin(ogen) degradation products and D-dimer and prolongation of the bleeding time. Incubation of B. asper venom with batimastat and α 2-macroglobulin abrogated the hypoaggregating activity, confirming the role of venom proteinases in this effect. Neither aspercetin nor the defibrin(ogen)ating and hypoaggregating components induced hemorrhage upon intravenous injection. However, aspercetin, but not the thrombin-like or the prothrombin-activating proteinases, potentiated the hemorrhagic activity of two hemorrhagic metalloproteinases in the lungs. © 2005 Schattauer GmbH, Stuttgart.
Resumo:
Several experimental studies of pulmonary emphysema using animal models have been described in the literature. However, only a few of these studies have focused on the assessment of ergometric function as a non-invasive technique to validate the methodology used for induction of experimental emphysema. Additionally, functional assessments of emphysema are rarely correlated with morphological pulmonary abnormalities caused by induced emphysema. The present study aimed to evaluate the effects of elastase administered by tracheal puncture on pulmonary parenchyma and their corresponding functional impairment. This was evaluated by measuring exercise capacity in C57Bl/6 mice in order to establish a reproducible and safe methodology of inducing experimental emphysema. Thirty six mice underwent ergometric tests before and 28 days after elastase administration. Pancreatic porcine elastase solution was administered by tracheal puncture, which resulted in a significantly decreased exercise capacity, shown by a shorter distance run (-30.5%) and a lower mean velocity (-15%), as well as in failure to increase the elimination of carbon dioxide. The mean linear intercept increased significantly by 50% in tracheal elastase administration. In conclusion, application of elastase by tracheal function in C57Bl/6 induces emphysema, as validated by morphometric analyses, and resulted in a significantly lower exercise capacity, while resulting in a low mortality rate. (C) 2011 Sociedade Portuguesa de Pneumologia. Published by Elsevier Espana, S.L. All rights reserved.
Resumo:
Background and objective: Malnutrition is prevalent in hospitalized patients and causes systemic damage including effects on the respiratory and immune systems, as well as predisposing to infection and increasing postoperative complications and mortality. This study aimed to assess the impact of malnutrition on the rate of postoperative pulmonary complications, respiratory muscle strength and chest wall expansion in patients undergoing elective upper abdominal surgery. Methods: Seventy-five consecutive candidates for upper abdominal surgery (39 in the malnourished group (MNG) and 36 in the control group (CG)) were enrolled in this prospective controlled cohort study. All patients were evaluated for nutritional status, respiratory muscle strength, chest wall expansion and lung function before surgery. Postoperative pulmonary complications (pneumonia, tracheobronchitis, atelectasis and acute respiratory failure) before discharge from hospital were also evaluated. Results: The MNG showed expiratory muscle weakness (MNG 65 +/- 24 vs CG 82 +/- 22 cm H2O; P < 0.001) and decreased chest wall expansion (P < 0.001), whereas inspiratory muscle strength and lung function were preserved (P > 0.05). The MNG also had a higher incidence of postoperative pulmonary complications compared with the CG (31% and 11%, respectively; P = 0.05). In addition, expiratory muscle weakness was correlated with BMI in the MNG (r = 0.43; P < 0.01). The association between malnutrition and expiratory muscle weakness increased the likelihood of postoperative pulmonary complications after upper abdominal surgery (P = 0.02). Conclusions: These results show that malnutrition is associated with weakness of the expiratory muscles, decreased chest wall expansion and increased incidence of pulmonary complications in patients undergoing elective upper abdominal surgery.
Resumo:
Objective: To investigate the significance of cellular immune markers, as well as that of collagen and elastic components of the extracellular matrix, within granulomatous structures in biopsies of patients with pulmonary or extrapulmonary sarcoidosis. Methods: We carried out qualitative and quantitative evaluations of inflammatory cells, collagen fibers, and elastic fibers in granulomatous structures in surgical biopsies of 40 patients with pulmonary and extrapulmonary sarcoidosis using histomorphometry, immunohistochemistry, picrosirius red staining, and Weigert's resorcin-fuchsin staining. Results: The extrapulmonary tissue biopsies presented significantly higher densities of lymphocytes, macrophages, and neutrophils than did the lung tissue biopsies. Pulmonary granulomas showed a significantly higher number of collagen fibers and a lower density of elastic fibers than did extrapulmonary granulomas. The amount of macrophages in the lung samples correlated with FVC (p < 0.05), whereas the amount of CD3+, CD4+, and CD8+ lymphocytes correlated with the FEV1/FVC ratio and VC. There were inverse correlations between TLC and the CD1a+ cell count (p < 0.05), as well as between DLCO and collagen/elastic fiber density (r = -0.90; p = 0.04). Conclusions: Immunophenotyping and remodeling both showed differences between pulmonary and extrapulmonary sarcoidosis in terms of the characteristics of the biopsy samples. These differences correlated with the clinical and spirometric data obtained for the patients, suggesting that two different pathways are involved in the mechanism of antigen clearance, which was more effective in the lungs and lymph nodes.
Resumo:
Background: Pulmonary hypertension is associated with a worse prognosis after cardiac transplantation. The pulmonary hypertension reversibility test with sodium nitroprusside (SNP) is associated with a high rate of systemic arterial hypotension, ventricular dysfunction of the transplanted graft and high rates of disqualification from transplantation. Objective: This study was aimed at comparing the effects of sildenafil (SIL) and SNP on hemodynamic, neurohormonal and echocardiographic variables during the pulmonary reversibility test. Methods: The patients underwent simultaneously right cardiac catheterization, echocardiography, BNP measurement, and venous blood gas analysis before and after receiving either SNP (1 - 2 mu g/kg/min) or SIL (100 mg, single dose). Results: Both drugs reduced pulmonary hypertension, but SNP caused a significant systemic hypotension (mean blood pressure - MBP: 85.2 vs. 69.8 mm Hg; p < 0.001). Both drugs reduced cardiac dimensions and improved left cardiac function (SNP: 23.5 vs. 24.8%, p = 0.02; SIL: 23.8 vs. 26%, p < 0.001) and right cardiac function (SIL: 6.57 +/- 2.08 vs. 8.11 +/- 1.81 cm/s, p = 0.002; SNP: 6.64 +/- 1.51 vs. 7.72 +/- 1.44 cm/s, p = 0.003), measured through left ventricular ejection fraction and tissue Doppler, respectively. Sildenafil, contrary to SNP, improved venous oxygen saturation, measured on venous blood gas analysis. Conclusion: Sildenafil and SNP are vasodilators that significantly reduce pulmonary hypertension and cardiac geometry, in addition to improving biventricular function. Sodium nitroprusside, contrary to SIL, was associated with systemic arterial hypotension and worsening of venous oxygen saturation. (Arq Bras Cardiol 2012;99(3):848-856)
Resumo:
OBJECTIVE: The potential influence of magnesium on exercise performance is a subject of increasing interest. Magnesium has been shown to have bronchodilatatory properties in asthma and chronic obstructive pulmonary disease patients. The aim of this study was to investigate the effects of acute magnesium IV loading on the aerobic exercise performance of stable chronic obstructive pulmonary disease patients. METHODS: Twenty male chronic obstructive pulmonary disease patients (66.2 +/- 8.3 years old, FEV1: 49.3 +/- 19.8%) received an IV infusion of 2 g of either magnesium sulfate or saline on two randomly assigned occasions approximately two days apart. Spirometry was performed both before and 45 minutes after the infusions. A symptom-limited incremental maximal cardiopulmonary test was performed on a cycle ergometer at approximately 100 minutes after the end of the infusion. ClinicalTrials.gov: NCT00500864 RESULTS: Magnesium infusion was associated with significant reductions in the functional residual capacity (-0.41 l) and residual volume (-0.47 l), the mean arterial blood pressure (-5.6 mmHg) and the cardiac double product (734.8 mmHg.bpm) at rest. Magnesium treatment led to significant increases in the maximal load reached (+8 w) and the respiratory exchange ratio (0.06) at peak exercise. The subgroup of patients who showed increases in the work load equal to or greater than 5 w also exhibited significantly greater improvements in inspiratory capacity (0.29 l). CONCLUSIONS: The acute IV loading of magnesium promotes a reduction in static lung hyperinflation and improves the exercise performance in stable chronic obstructive pulmonary disease patients. Improvements in respiratory mechanics appear to be responsible for the latter finding.
Resumo:
Pulmonary arterial hypertension (PAH) is a disease of the pulmonary vasculature characterized by vasoconstriction and vascular remodeling leading to a progressive increase in pulmonary vascular resistance (PVR). It is becoming increasingly recognized that it is the response of the right ventricle (RV) to the increased afterload resulting from this increase in PVR that is the most important determinant of patient outcome. A range of hemodynamic, structural, and functional measures associated with the RV have been found to have prognostic importance in PAH and, therefore, have potential value as parameters for the evaluation and follow-up of patients. If such measures are to be used clinically, there is a need for simple, reproducible, accurate, easy-to-use, and noninvasive methods to assess them. Cardiac magnetic resonance imaging (CMRI) is regarded as the "gold standard" method for assessment of the RV, the complex structure of which makes accurate assessment by 2-dimensional methods, such as echocardiography, challenging. However, the majority of data concerning the use of CMRI in PAH have come from studies evaluating a variety of different measures and using different techniques and protocols, and there is a clear need for the development of standardized methodology if CMRI is to be established in the routine assessment of patients with PAH. Should such standards be developed, it seems likely that CMRI will become an important method for the noninvasive assessment and monitoring of patients with PAH. (C) 2012 Elsevier Inc. All rights reserved. (Am J Cardiol 2012;110[suppl]:25S-31S)
Resumo:
Blood pressure variability (BPV) and baroreflex dysfunction may contribute to end-organ damage process. We investigated the effects of baroreceptor deficit (10 weeks after sinoaortic denervation - SAD) on hemodynamic alterations, cardiac and pulmonary remodeling. Cardiac function and morphology of male Wistar intact rats (C) and SAD rats (SAD) (n = 8/group) were assessed by echocardiography and collagen quantification. BP was directly recorded. Ventricular hypertrophy was quantified by the ratio of left ventricular weight (LVW) and right ventricular weight (RVW) to body weight (BW). BPV was quantified in the time and frequency domains. The atrial natriuretic peptide (ANP), alpha-skeletal actin (alpha-skelectal), collagen type I and type III genes mRNA expression were evaluated by RT-PCR. SAD did not change BP, but increased BPV (11 +/- 0.49 vs. 5 +/- 0.3 mm Hg). As expected, baroreflex was reduced in SAD. Pulmonary artery acceleration time was reduced in SAD. In addition, SAD impaired diastolic function in both LV (6.8 +/- 0.26 vs. 5.02 +/- 0.21 mm Hg) and RV (5.1 +/- 0.21 vs. 4.2 +/- 0.12 mm Hg). SAD increased LVW/BW in 9% and RVW/BW in 20%, and augmented total collagen (3.8-fold in LV, 2.7-fold in RV, and 3.35-fold in pulmonary artery). Also, SAD increased type I (similar to 6-fold) and III (similar to 5-fold) collagen gene expression. Denervation increased ANP expression in LV (75%), in RV (74%) and increased a-skelectal expression in LV (300%) and in RV (546%). Baroreflex function impairment by SAD, despite not changing BP, induced important adjustments in cardiac structure and pulmonary hypertension. These changes may indicate that isolated baroreflex dysfunction can modulate target tissue damage. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
It has recently been suggested that regular exercise reduces lung function decline and risk of chronic obstructive pulmonary disease (COPD) among active smokers; however, the mechanisms involved in this effect remain poorly understood. The present study evaluated the effects of regular exercise training in an experimental mouse model of chronic cigarette smoke exposure. Male C57BL/6 mice were divided into four groups (control, exercise, smoke and smoke+exercise). For 24 weeks, we measured respiratory mechanics, mean linear intercept, inflammatory cells and reactive oxygen species (ROS) in bronchoalveolar lavage (BAL) fluid, collagen deposition in alveolar walls, and the expression of antioxidant enzymes, matrix metalloproteinase 9, tissue inhibitor of metalloproteinase (TIMP) 1, interleukin (IL)-10 and 8-isoprostane in alveolar walls. Exercise attenuated the decrease in pulmonary elastance (p<0.01) and the increase in mean linear intercept (p=0.003) induced by cigarette smoke exposure. Exercise substantially inhibited the increase in ROS in BAL fluid and 8-isoprostane expression in lung tissue induced by cigarette smoke. In addition, exercise significantly inhibited the decreases in IL-10, TIMP1 and CuZn superoxide dismutase induced by exposure to cigarette smoke. Exercise also increased the number of cells expressing glutathione peroxidase. Our results suggest that regular aerobic physical training of moderate intensity attenuates the development of pulmonary disease induced by cigarette smoke exposure.