948 resultados para PRODUCED FORMATION WATER


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present paper, the use of poly(styrene sulfonate) (PSS), produced from discarded polystyrene materials through heterogeneous and homogeneous processes, was investigated. The use of PSS for water treatment, using a kaolin suspension as wastewater model, reduced water turbidity for all the employed materials when compared to the blank analysis, without PSS. The most efficient polyelectrolyte was PSS cups obtained by homogeneous route. The same behavior was observed for real system. The homogeneous PSS cups showed a balance between a moderate molecular weight and high anionic character that improved flocks formation and water removal turbidity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lettuce is worldwide known as the most important vegetable. In this context, most farmers are searching new techniques for best quality products including hydropony. However, nitrate is of great concern, since it has a negative impact on human metabolism. The main objective of the present work was to evaluate the nitrate content of lettuce produced by conventional and hydroponic systems. The determination was conducted by ion chromatography and a new method of extraction was tested using microwave oven digestion. The results indicated that nitrate level produced in the conventional system was lower than in the hydroponic system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 1µs Molecular Dynamic simulation was performed with a realistic model system of Sodium Dodecyl Sulfate (SDS) micelles in aqueous solution, comprising of 360 DS-, 360 Na+ and 90000 water particles. After 300 ns three different micellar shapes and sizes 41, 68 and 95 monomers, were observed. The process led to stabilization in the total number of SDS clusters and an increase in the micellar radius to 2.23 nm, in agreement with experimental results. An important conclusion, is be aware that simulations employed in one aggregate, should be considered as a constraint. Size and shape distribution must be analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to encapsulate curcumin into chitosan, using sodium tripolyphosphate (TPP) as an ionic crosslinker by the spray drying method. The influence of TPP on the properties of the final product, such as solubility, morphology, loading efficiency, thermal behavior, swelling degree and release profiles, was evaluated. The microparticles had a spherical morphology (0.5-20 µm) with no apparent porosity or cracks. Results indicated the formation of a polymeric network, which ensures effective protection for curcumin. Controlled-release studies were carried out at pH 1.2 and 6.8, to observe the influence of pH on curcumin release while the mechanism was analyzed using the Korsmeyer-Peppas equation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work aims to (1) produce and characterize the flour obtained from two varieties of canihua, cupi and illpa-inia, and (2) evaluate the ability of these flours to form biofilms. The flours produced contain proteins, starches, lipids, organic substances containing phenol groups, and high percentages of unsaturated fatty acids. Films produced from the illpa variety presented lower water vapor permeability and larger Young’s modulus values than the films formed from the cupi variety. Both films were yellowish and displayed a high light blocking ability (as compared with polyethylene films), which can be attributed to the presence of phenolic compounds. Furthermore, they showed lesser solubility and water permeability than other polysaccharide films, which may be the result of the higher protein (12%–13.8%) and lipid (11%) contents in canihua flours, as well as the formation of a larger number of S–S bonds. On the other hand, these films presented a single vitreous transition temperature at low temperatures (< 0 °C), crystallization of the A and Vh types, and an additional diffraction peak at 2 = 7.5º, ascribed to the presence of essential fatty acids in canihua flour. Canihua flour can form films with adequate properties and shows promise for potential applications in food packaging, because it acts as a good barrier to incident ultraviolet light.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A small carbonatite dyke swarm has been identified at Naantali, southwest Finland. Several swarms of shoshonitic lamprophyres are also known along the Archean-Proterozoic boundary in eastern Finland and northwest Russia. These intrusions, along with the carbonatite intrusion at Halpanen, eastern Finland, represent a stage of widespread low-volume mantle-sourced alkaline magmatism in the Svecofennian Domain. Using trace element and isotope geochemistry coupled with precise geochronology from these rocks, a model is presented for the Proterozoic metasomatic evolution of the Fennoscandian subcontinental lithospheric mantle. At ~2.2-2.06 Ga, increased biological production in shallow seas linked to continental rifting, resulted in increased burial rates of organic carbon. Subduction between ~1.93-1.88 Ga returned organic carbon-enriched sediments of mixed Archean and Proterozoic provenance to the mantle. Dehydration reactions supplied water to the mantle wedge, driving arc volcanism, while mica, amphibole and carbonate were brought deeper into the mantle with the subducting slab. The cold subducted slab was heated conductively from the surrounding warm mantle, while pressures continued to gradually increase as a result of crustal thickening. The sediments began to melt in a two stage process, first producing a hydrous alkaline silicate melt, which infiltrated the mantle wedge and crystallised as metasomatic veins. At higher temperatures, carbonatite melt was produced, which preferentially infiltrated the pre-existing metasomatic vein network. At the onset of post-collisional extension, deep fault structures formed, providing conduits for mantle melts to reach the upper crust. Low-volume partial melting of the enriched mantle at depths of at least 110 km led to the formation of first carbonatitic magma and subsequently lamprophyric magma. Carbonatite was emplaced in the upper crust at Naantali at 1795.7 ± 6.8 Ma; lamprophyres along the Archean-Proterozoic boundary were emplaced between 1790.1 ± 3.3 Ma and 1781 ± 20 Ma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study with beetroot seedlings, cultivar Top Tall Early Wonder, was carried out at the State University of Mato Grosso do Sul (UEMS/Aquidauana), from October to November 2008. Three environments of cultivation were used: greenhouse; nursery with monofilament screen of 50 % of shading; and nursery with aluminized thermal reflective screen of 50% of shading. In these environments, three polystyrene trays of 72, 128 and 200 cells, filled with four substrates, were tested: soil; Plantmax®; coconut fiber and vermiculite. There were no replication environments and then each one was considered an experiment alone. For each environment, it was adopted a completely randomized design in factorial scheme 3x4 (three trays x four substrates), with four replications, performing individual analysis of variance and joint analysis of experiments for environment comparisons. The monofilament screen is the best environment for seedlings produced in tray of 72 cells, and the greenhouse was the best environment for seedlings produced in trays of 128 cells. The best seedlings were formed in the tray of 72 cells. Vermiculite was the best substrate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quantitative knowledge of hydrological parameters (rainfall and flow) and their spatial and temporal variability on the regions or basins should be understood as essential to the efficient planning and management of water resources. Because the Ivinhema Basin, located in the state of Mato Grosso do Sul, Brazil, represents an important inductor on the region agricultural development, characterized as a major producer of grains and meat, it was used to characterize the hydrological study. Knowing the rainfall, flow and drainage area of each of the studied affluent, it was calculated the proportion of contribution of the affluent. To that end, it was proposed the concepts of potential and real contributions, aiming to identify the proportion of contribution of each of the affluent to the formation of the flow in the Ivinhema Basin. The results revealed that: the highest rainfall in the Ivinhema Basin occurred in the headwater regions; the mean specific flow of long duration reduces from the headwater to the mouth of Ivinhema Basin; the Sub-basin of Dorado's River has the highest potential and real contribution for the formation of the Ivinhema Basin flow; and the drainage areas of the affluent Dourados and Vacaria contribute with 53% flow of the basin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of swine wastewater on atrazine dissipation and formation of bound residues in subtropical clay soil were investigated in this study. The experiment was carried out in laboratory, under room conditions, where samples of Rhodic Hapludox soil received 168.61 mg kg-1 of atrazine and were incubated for 60 days in the following treatments: T1 (sterilized soil + swine wastewater), T2 (sterilized soil + distilled water), T3 (Non sterilized soil + swine wastewater) and T4 (Non sterilized soil + distilled water). The extractable residues and bound residues of atrazine were extracted and analyzed by high performance liquid chromatography. The results showed no effect of swine wastewater on atrazine dissipation. However, the addition of swine wastewater favored the increase of bound residues, which can increase the persistence of atrazine in the environment and reduce its bioavailability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work aimed to study the effect of drip irrigation management on growth and yield of the 'Roxo de Valinhos' fig tree (Ficus carica L.), at three years old, and to determine crop coefficients (Kc) and its water requirement (ETc) under Baixada Fluminense climate and soil conditions, state of Rio de Janeiro, Brazil. The study was carried out in the experimental area of SIPA (Sistema Integrado de Produção Agroecológica) in Seropédica, Rio de Janeiro State, from July 2011 to May 2012. The experimental area was divided in two blocks, named B1 (sandy clay loam texture) and B2 (loamy sand texture). In each block, irrigation frequencies (IF) of two (T1) and four days (T2) were evaluated, as well as the irrigation absence (T3). Irrigation management and water consumption determination were performed through the soil water balance, using the TDR technique. Plant growth was not affected by IF, differing only in the number of produced internodes. For both soil textures, the mean Kc was 0.60, with a significant difference (p<0.05) only for IF. The estimated mean yield showed no significant differences between both textural classes, ranging from 6,612 kg ha-1 (T3) to 8,554 kg ha-1 (T1). This study indicates the importance of irrigation frequency in the irrigation management of fig trees cultivated in soils with different physical characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work aimed to study the agronomic performance and capacity of nutrient removal by bermudagrass (Cynodon spp.) and cattail (Typha sp.) when grown in constructed wetlands systems (CWSs) of vertical and horizontal flow, respectively, used in the post-treatment of swine breeding wastewater (ARS). The average yield of dry matter (DM) of bermudagrass in sections of 60-day interval ranged from 14 to 43 t ha-1, while the cultivated cattail produced in a single cut after 200 days of cultivation between 45 and 67 t ha-1 of DM. Bermudagrass extracted up to 17.65 kg ha-1 d-1 of nitrogen, 1.76 kg ha-1 d-1 of phosphorus, 6.67 g ha-1 d-1 of copper and 54.75 g ha-1 d-1 of zinc. Cattail extracted up to 5.10 kg ha-1 d-1 of nitrogen, 1.07 kg ha-1 d-1 of phosphorus, 1.41 g ha-1 d-1 of copper and 16.04 g ha-1 d-1 of zinc. Cattail and bermudagrass were able to remove, respectively, 5.0 and 4.6% of the nitrogen and 11.2 and 5.4% of the phosphorus applied via ARS, being less efficient in extracting N and P when the initial intake of these nutrients is evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical coagulation is commonly used in raw water and wastewater treatment plants for the destabilisation of pollutants so that they can be removed in the subsequent separation processes. The most commonly used coagulation chemicals are aluminium and iron metal salts. Electrocoagulation technology has also been proposed for the treatment of raw waters and wastewaters. With this technology, metal cations are produced on the electrodes via electrolysis and these cations form various hydroxides in the water depending on the water pH. In addition to this main reaction, several side reactions, such as hydrogen bubble formation and the reduction of metals on cathodes, also take place in the cell. In this research, the applications of electrocoagulation were investigated in raw water treatment and wastewater applications. The surface water used in this research contained high concentrations of natural organic matter (NOM). The effect of the main parameters – current density, initial pH, electric charge per volume, temperature and electrolysis cell construction – on NOM removal were investigated. In the wastewater treatment studies, the removal of malodorous sulphides and toxic compounds from the wastewaters and debarking effluents were studied. Also, the main parameters of the treatment, such as initial pH and current density, were investigated. Aluminium electrodes were selected for the raw water treatment, whereas wastewaters and debarking effluent were treated with iron electrodes. According to results of this study, aluminium is more suitable electrode material for electrocoagulation applications because it produces Al(III) species. Metal ions and hydroxides produced by iron electrodes are less effective in the destabilisation of pollutants because iron electrodes produce more soluble and less charged Fe(II) species. However, Fe(II) can be effective in some special applications, such as sulphide removal. The resulting metal concentration is the main parameter affecting destabilisation of pollutants. Current density, treatment time, temperature and electrolysis cell construction affect the dissolution of electrodes and hence also the removal of pollutants. However, it seems that these parameters have minimal significance in the destabilization of the pollutants besides this effect (in the studied range of parameters). Initial pH and final pH have an effect on the dissolution of electrodes, but they also define what aluminium or iron species are formed in the solution and have an effect on the ζ-potential of all charged species in the solution. According to the results of this study, destabilisation mechanisms of pollutants by electrocoagulation and chemical coagulation are similar. Optimum DOC removal and low residual aluminium can be obtained simultaneously with electrocoagulation, which may be a significant benefit of electrocoagulation in surface water treatment compared to chemical coagulation. Surface water treatment with electrocoagulation can produce high quality water, which could be used as potable water or fresh water for industrial applications. In wastewater treatment applications, electrocoagulation can be used to precipitate malodorous sulphides to prevent their release into air. Technology seems to be able to remove some toxic pollutants from wastewater and could be used as pretreatment prior to treatment at a biological wastewater treatment plant. However, a thorough economic and ecological comparison of chemical coagulation and electrocoagulation is recommended, because these methods seem to be similar in pollutant destabilisation mechanisms, metal consumption and removal efficiency in most applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biofilms constitute a physical barrier, protecting the encased bacteria from detergents and sanitizers. The objective of this work was to analyze the effectiveness of sodium hypochlorite (NaOCl) against strains of Staphylococcus aureus isolated from raw milk of cows with subclinical mastitis and Staphylococcus aureus isolated from the milking environment (blowers and milk conducting tubes). The results revealed that, in the presence of NaOCl (150ppm), the number of adhered cells of the twelve S. aureus strains was significantly reduced. When the same strains were evaluated in biofilm condition, different results were obtained. It was found that, after a contact period of five minutes with NaOCl (150ppm), four strains (two strains from milk , one from the blowers and one from a conductive rubber) were still able to grow. Although with the increasing contact time between the bacteria and the NaOCl (150ppm), no growth was detected for any of the strains. Concerning the efficiency of NaOCl on total biofilm biomass formation by each S. aureus strain, a decrease was observed when these strains were in contact with 150 ppm NaOCl for a total period of 10 minutes. This study highlights the importance of a correct sanitation protocol of all the milk processing units which can indeed significantly reduce the presence of microorganisms, leading to a decrease of cow´s mastitis and milk contamination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inorganic-organic sol-gel hybrid coatings can be used for improving and modifying properties of wood-based materials. By selecting a proper precursor, wood can be made water repellent, decay-, moisture- or UV-resistant. However, to control the barrier properties of sol-gel coatings on wood substrates against moisture uptake and weathering, an understanding of the surface morphology and chemistry of the deposited sol-gel coatings on wood substrates is needed. Mechanical pulp is used in production of wood-containing printing papers. The physical and chemical fiber surface characteristics, as created in the chosen mechanical pulp manufacturing process, play a key role in controlling the properties of the end-use product. A detailed understanding of how process parameters influence fiber surfaces can help improving cost-effectiveness of pulp and paper production. The current work focuses on physico-chemical characterization of modified wood-based materials with surface sensitive analytical tools. The overall objectives were, through advanced microscopy and chemical analysis techniques, (i) to collect versatile information about the surface structures of Norway spruce thermomechanical pulp fiber walls and understand how they are influenced by the selected chemical treatments, and (ii) to clarify the effect of various sol-gel coatings on surface structural and chemical properties of wood-based substrates. A special emphasis was on understanding the effect of sol-gel coatings on the water repellency of modified wood and paper surfaces. In the first part of the work, effects of chemical treatment on micro- and nano-scale surface structure of 1st stage TMP latewood fibers from Norway spruce were investigated. The chemicals applied were buffered sodium oxalate and hydrochloric acid. The outer and the inner fiber wall layers of the untreated and chemically treated fibers were separately analyzed by light microscopy, atomic force microscopy and field-emission scanning electron microscopy. The selected characterization methods enabled the demonstration of the effect of different treatments on the fiber surface structure, both visually and quantitatively. The outer fiber wall areas appeared as intact bands surrounding the fiber and they were clearly rougher than areas of exposed inner fiber wall. The roughness of the outer fiber wall areas increased most in the sodium oxalate treatment. The results indicated formation of more surface pores on the exposed inner fiber wall areas than on the corresponding outer fiber wall areas as a result of the chemical treatments. The hydrochloric acid treatment seemed to increase the surface porosity of the inner wall areas. In the second part of the work, three silane-based sol-gel hybrid coatings were selected in order to improve moisture resistance of wood and paper substrates. The coatings differed from each other in terms of having different alkyl (CH3–, CH3-(CH2)7–) and fluorocarbon (CF3–) chains attached to the trialkoxysilane sol-gel precursor. The sol-gel coatings were deposited by a wet coating method, i.e. spraying or spreading by brush. The effect of solgel coatings on surface structural and chemical properties of wood-based substrates was studied by using advanced surface analyzing tools: atomic force microscopy, X-ray photoelectron spectroscopy and time-of-flight secondary ion spectroscopy. The results show that the applied sol-gel coatings, deposited as thin films or particulate coatings, have different effects on surface characteristics of wood and wood-based materials. The coating which has a long hydrocarbon chain (CH3-(CH2)7–) attached to the silane backbone (octyltriethoxysilane) produced the highest hydrophobicity for wood and wood-based materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate the allelopathic effect of Marsilea minuta against the germination and seedling growths of rice (Oryza sativa) and wheat (Triticum aestivum), germination bioassays were conducted in both Petri dish and soil cultures in laboratory conditions. Rice and wheat seeds were allowed to germinate in a 1, 2, 3, 4, and 5% (w/v) aqueous extract of whole plant and 2, 4, 6, and 8% (w/w) plant residue-incorporated soils of M. minuta. In Petri dish experiments, 5% (w/v) an aqueous extract of M. mimuta showed significantly lower germination percentages (18.8% and 56.3%), root lengths (0.9 and 4.5 cm), shoot lengths (3.3 and 12.4 cm), seedling lengths (4.1 and 25.0 cm), root dry weights (1.4 and 5.6 g), shoot dry weights (1.1 and 9.0 g), seedling biomasses (2.5 and 14.6 g), and seedling vigor indices (77.4 and 957.3) in rice and wheat, respectively. In pot experiments, the M. minuta residue infested soil, with 8% concentration, produced significantly lower germination percentages (25.3 and 37.5%), root lengths (2.7 and 6.1 cm), shoot lengths (6.2 and 16.5 cm), seedling lengths (8.9 and 22.6 cm), root dry weights (2.4 and 5.5 g), shoot dry weights (4.0 and 2.8 g), seedling biomasses (6.4 and 8.3 g), and seedling vigor indices (224.1 and 855.3) in rice and wheat, respectively. The highest phytotoxic action of 5% aqueous whole plant extract of M. minuta against test crops seem to be due to the presence of two potent phenolic compounds, namely p-coumaric acid (2.91 mg L-1) and m-coumaric acid (1.59 mg L-1) as determined by HPLC analysis.