444 resultados para PRECIPITATE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphene, which is a two-dimensional carbon material, exhibits unique properties that promise its potential applications in photovoltaic devices. Dye-sensitized solar cell (DSSC) is a representative of the third generation photovoltaic devices. Therefore, it is important to synthesize graphene with special structures, which possess excellent properties for dye-sensitized solar cells. This dissertation research was focused on (1) the effect of oxygen content on the structure of graphite oxide, (2) the stability of graphene oxide solution, (3) the application of graphene precipitate from graphene oxide solution as counter electrode for DSSCs, (4) the development of a novel synthesis method for the three-dimensional graphene with honeycomb-like structure, and (5) the exploration of honeycomb structured graphene (HSG) as counter electrodes for DSSCs. Graphite oxide is a crucial precursor to synthesize graphene sheets via chemical exfoliation method. The relationship between the oxygen content and the structures of graphite oxides was still not explored. In this research, the oxygen content of graphite oxide is tuned by changing the oxidation time and the effect of oxygen content on the structure of graphite oxide was evaluated. It has been found that the saturated ratio of oxygen to carbon is 0.47. The types of functional groups in graphite oxides, which are epoxy, hydroxyl, and carboxylgroups, are independent of oxygen content. However, the interplanar space and BET surface area of graphite oxide linearly increases with increasing O/C ratio. Graphene oxide (GO) can easily dissolve in water to form a stable homogeneous solution, which can be used to fabricate graphene films and graphene based composites. This work is the first research to evaluate the stability of graphene oxide solution. It has been found that the introduction of strong electrolytes (HCl, LiOH, LiCl) into GO solution can cause GO precipitation. This indicates that the electrostatic repulsion plays a critical role in stabilizing aqueous GO solution. Furthermore, the HCl-induced GO precipitation is a feasible approach to deposit GO sheets on a substrate as a Pt-free counter electrode for a dye-sensitized solar cell (DSSC), which exhibited 1.65% of power conversion efficiency. To explore broad and practical applications, large-scale synthesis with controllable integration of individual graphene sheets is essential. A novel strategy for the synthesis of graphene sheets with three-dimensional (3D) Honeycomb-like structure has been invented in this project based on a simple and novel chemical reaction (Li2O and CO to graphene and Li2CO3). The simultaneous formation of Li2CO3 with graphene not only can isolate graphene sheets from each other to prevent graphite formation during the process, but also determine the locally curved shape of graphene sheets. After removing Li2CO3, 3D graphene sheets with a honeycomb-like structure were obtained. This would be the first approach to synthesize 3D graphene sheets with a controllable shape. Furthermore, it has been demonstrated that the 3D Honeycomb-Structured Graphene (HSG) possesses excellent electrical conductivity and high catalytic activity. As a result, DSSCs with HSG counter electrodes exhibit energy conversion efficiency as high as 7.8%, which is comparable to that of an expensive noble Pt electrode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated whether occupational role stress is associated with differential levels of the stress hormone cortisol in response to acute psychosocial stress. Forty-three medication-free nonsmoking men aged between 22 and 65 years (mean ± SEM: 44.5 ± 2) underwent an acute standardized psychosocial stress task combining public speaking and mental arithmetic in front of an audience. We assessed occupational role stress in terms of role conflict and role ambiguity (combined into a measure of role uncertainty) as well as further work characteristics and psychological control variables including time pressure, overcommitment, perfectionism, and stress appraisal. Moreover, we repeatedly measured salivary cortisol and blood pressure levels before and after stress exposure, and several times up to 60 min thereafter. Higher role uncertainty was associated with a more pronounced cortisol stress reactivity (p = .016), even when controlling for the full set of potential confounders (p < .001). Blood pressure stress reactivity was not associated with role uncertainty. Our findings suggest that occupational role stress in terms of role uncertainty acts as a background stressor that is associated with increased HPA-axis reactivity to acute stress. This finding may represent a potential mechanism regarding how occupational role stress may precipitate adverse health outcomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Formation pathways of ancient siliceous iron formations and related Fe isotopic fractionation are still not completely understood. Investigating these processes, however, is difficult as good modern analogues to ancient iron formations are scarce. Modern siliceous Fe oxyhydroxide deposits are found at marine hydrothermal vent sites, where they precipitate from diffuse, low temperature fluids along faults and fissures on the seafloor. These deposits exhibit textural and chemical features that are similar to some Phanerozoic iron formations, raising the question as to whether the latter could have precipitated from diffuse hydrothermal fluids rather than from hydrothermal plumes. In this study, we present the first data on modern Fe oxyhydroxide deposits from the Jan Mayen hydrothermal vent fields, Norwegian-Greenland Sea. The samples we investigated exhibited very low δ56Fe values between -2.09‰ and -0.66‰. Due to various degrees of partial oxidation, the Fe oxyhydroxides are with one exception either indistinguishable from low-temperature hydrothermal fluids from which they precipitated (-1.84‰ and -1.53‰ in δ56Fe) or are enriched in the heavy Fe isotopes. In addition, we investigated Fe isotope variations in Ordovician jasper beds from the Løkken ophiolite complex, Norway, which have been interpreted to represent diagenetic products of siliceous ferrihydrite precursors that precipitated in a hydrothermal plume, in order to compare different formation pathways of Fe oxyhydroxide deposits. Iron isotopes in the jasper samples have higher δ56Fe values (-0.38‰ to +0.89‰) relative to modern, high-temperature hydrothermal vent fluids (ca. -0.40‰ on average), supporting the fallout model. However, formation of the Ordovician jaspers by diffuse venting cannot be excluded, due to lithological differences of the subsurface of the two investigated vent systems. Our study shows that reliable interpretation of Fe isotope variations in modern and ancient marine Fe oxyhydroxide deposits depends on comprehensive knowledge of the geological context. Furthermore, we demonstrate that very negative δ56Fe values in such samples might not be the result of microbial dissimilatory iron reduction, but could be caused instead by inorganic reactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerical simulations based on plans for a deep geothermal system in Basel, Switzerland are used here to understand chemical processes that occur in an initially dry granitoid reservoir during hydraulic stimulation and long-term water circulation to extract heat. An important question regarding the sustainability of such enhanced geothermal systems (EGS), is whether water–rock reactions will eventually lead to clogging of flow paths in the reservoir and thereby reduce or even completely block fluid throughput. A reactive transport model allows the main chemical reactions to be predicted and the resulting evolution of porosity to be tracked over the expected 30-year operational lifetime of the system. The simulations show that injection of surface water to stimulate fracture permeability in the monzogranite reservoir at 190 °C and 5000 m depth induces redox reactions between the oxidised surface water and the reduced wall rock. Although new calcite, chlorite, hematite and other minerals precipitate near the injection well, their volumes are low and more than compensated by those of the dissolving wall-rock minerals. Thus, during stimulation, reduction of injectivity by mineral precipitation is unlikely. During the simulated long-term operation of the system, the main mineral reactions are the hydration and albitization of plagioclase, the alteration of hornblende to an assemblage of smectites and chlorites and of primary K-feldspar to muscovite and microcline. Within a closed-system doublet, the composition of the circulated fluid changes only slightly during its repeated passage through the reservoir, as the wall rock essentially undergoes isochemical recrystallization. Even after 30 years of circulation, the calculations show that porosity is reduced by only ∼0.2%, well below the expected fracture porosity induced by stimulation. This result suggests that permeability reduction owing to water–rock interaction is unlikely to jeopardize the long-term operation of deep, granitoid-hosted EGS systems. A peculiarity at Basel is the presence of anhydrite as fracture coatings at ∼5000 m depth. Simulated exposure of the circulating fluid to anhydrite induces a stronger redox disequilibrium in the reservoir, driving dissolution of ferrous minerals and precipitation of ferric smectites, hematite and pyrite. However, even in this scenario the porosity reduction is at most 0.5%, a value which is unproblematic for sustainable fluid circulation through the reservoir.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To review our clinical experience and determine if there are appropriate signs and symptoms to consider POLG sequencing prior to valproic acid (VPA) dosing in patients with seizures. METHODS: Four patients who developed VPA-induced hepatotoxicity were examined for POLG sequence variations. A subsequent chart review was used to describe clinical course prior to and after VPA dosing. RESULTS: Four patients of multiple different ethnicities, age 3-18 years, developed VPA-induced hepatotoxicity. All were given VPA due to intractable partial seizures. Three of the patients had developed epilepsia partialis continua. The time from VPA exposure to liver failure was between 2 and 3 months. Liver failure was reversible in one patient. Molecular studies revealed homozygous p.R597W or p.A467T mutations in two patients. The other two patients showed compound heterozygous mutations, p.A467T/p.Q68X and p.L83P/p.G888S. Clinical findings and POLG mutations were diagnostic of Alpers-Huttenlocher syndrome. CONCLUSION: Our cases underscore several important findings: POLG mutations have been observed in every ethnic group studied to date; early predominance of epileptiform discharges over the occipital region is common in POLG-induced epilepsy; the EEG and MRI findings varying between patients and stages of the disease; and VPA dosing at any stage of Alpers-Huttenlocher syndrome can precipitate liver failure. Our data support an emerging proposal that POLG gene testing should be considered in any child or adolescent who presents or develops intractable seizures with or without status epilepticus or epilepsia partialis continua, particularly when there is a history of psychomotor regression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pregnancy may precipitate acute episodes of thrombotic thrombocytopenic purpura (TTP), but pregnancy outcomes in women who have recovered from acquired TTP are not well documented. We analyzed pregnancy outcomes following recovery from TTP associated with acquired, severe ADAMTS13 deficiency (ADAMTS13 activity <10%) in women enrolled in the Oklahoma TTP-HUS Registry from 1995 to 2012. We also systematically searched for published reports on outcomes of pregnancies following recovery from TTP associated with acquired, severe ADAMTS13 deficiency. Ten women in the Oklahoma Registry had 16 subsequent pregnancies from 1999 to 2013. Two women had recurrent TTP, which occurred 9 and 29 days postpartum. Five of 16 pregnancies (31%, 95% confidence interval, 11%-59%) in 3 women were complicated by preeclampsia, a frequency greater than US population estimates (2.1%-3.2%). Thirteen (81%) pregnancies resulted in normal children. The literature search identified 382 articles. Only 6 articles reported pregnancies in women who had recovered from TTP associated with acquired, severe ADAMTS13 deficiency, describing 10 pregnancies in 8 women. TTP recurred in 6 pregnancies. Conclusions: With prospective complete follow-up, recurrent TTP complicating subsequent pregnancies in Oklahoma patients is uncommon, but the occurrence of preeclampsia may be increased. Most pregnancies following recovery from TTP in Oklahoma patients result in normal children.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The v-mos gene of Moloney murine sarcoma virus (Mo-MuSv) encodes a serine/threonine protein kinase capable of inducing cellular transformation. The c-mos protein is an important cell cycle regulator that functions during meiotic cell division cycles in germ cells. The overall function of c-mos in controlling meiosis is becoming better understood but the role of v-mos in malignant transformation of cells is largely unknown.^ In this study, v-mos protein was shown to be phosphorylated by M phase kinase in vitro and in vivo. The kinase activity and neoplastic transforming ability of v-mos is positively regulated by the phosphorylation. Together with the earlier finding of activation of M phase kinase by c-mos, these results raise the possibility of mutual regulation between M phase kinase and mos kinases.^ In addition to its functional interaction with the M phase kinase, the v-mos protein was shown to be present in the same protein complex with a cyclin-dependent kinase (cdk). In addition, an antibody that recognizes the cdk proteins was shown to co-precipitate the v-mos proteins in the interphase and mitotic cells transformed by p85$\sp{\rm gag-mos}$. Cdk proteins have been shown to be associated with nonmitotic cyclins which are potential oncogenes. The perturbation of cdk kinase or the activation of non-mitotic cyclins as oncogenes by v-mos could contribute directly to v-mos induced cellular transformation. v-mos proteins were also shown to interact with tubulin and vimentin, the essential components of microtubules and type IV intermediate filaments, respectively. The organizations of both microtubules and intermediate filaments are cell cycle-regulated. These results suggest that the v-mos kinase could be directly involved in inducing morphological changes typically seen in transformed cells.^ The interactions between the v-mos protein and these cell cycle control elements in regards to v-mos induced neoplastic transformation are discussed in detail in the text. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The importance of soil moisture anomalies on airmass convection over semiarid regions has been recognized in several studies. The underlying mechanisms remain partly unclear. An open question is why wetter soils can result in either an increase or a decrease of precipitation (positive or negative soil moisture–precipitation feedback, respectively). Here an idealized cloud-resolving modeling framework is used to explore the local soil moisture–precipitation feedback. The approach is able to replicate both positive and negative feedback loops, depending on the environmental parameters. The mechanism relies on horizontal soil moisture variations, which may develop and intensify spontaneously. The positive expression of the feedback is associated with the initiation of convection over dry soil patches, but the convective cells then propagate over wet patches where they strengthen and preferentially precipitate. The negative feedback may occur when the wind profile is too weak to support the propagation of convective features from dry to wet areas. Precipitation is then generally weaker and falls preferentially over dry patches. The results highlight the role of the midtropospheric flow in determining the sign of the feedback. A key element of the positive feedback is the exploitation of both low convective inhibition (CIN) over dry patches (for the initiation of convection) and high CAPE over wet patches (for the generation of precipitation).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Jakobshavns Effect may have been a significant factor in hastening the collapse of palaeo ice sheets with the advent of climatic warming after 18,000 years ago and may precipitate partial collapse of the present‐day Greenland and Antarctic Ice Sheets following CO2‐induced climatic warming in the decades ahead. The Jakobshavns Effect is observed today on Jakobshavns Glacier, which is located at 69°10′N on the west coast of Greenland. The Jakobshavns Effect is a group of positive feedback mechanisms which allow Jakobshavns Glacier to literally pull ice out of the Greenland Ice Sheet at a rate exceeding 7 km/a across a floating terminus 800 m thick and 6 km wide. The pulling power results from an imbalance of horizontal hydrostatic forces in ice and water columns at the grounding line of the floating terminus. Positive feedback mechanisms that sustain the rapid ice discharge rate are ubiquitous surface crevassing, high summer rates of surface melting, extending creep flow, progressive basal uncoupling, progressive lateral uncoupling, and rapid iceberg calving.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new series of cationic dinuclear arene ruthenium complexes bridged by three thiophenolato ligands, [(η6-arene)2Ru2(μ2-SR)3]+ with arene = indane, R = met: 1 (met = 4-methylphenyl); R = mco: 4 (mco = 4-methylcoumarin-7-yl); arene = biphenyl, R = met: 2; R = mco: 5; arene = 1,2,3,4-tetrahydronaphthalene, R = met: 3; R = mco: 6, have been prepared from the reaction of the neutral precursor [(η6-arene)Ru(μ2-Cl)Cl]2 and the corresponding thiophenol RSH. All cationic complexes have been isolated as chloride salts and fully characterized by spectroscopic and analytical methods. The molecular structure of 1, solved by X-ray structure analysis of a single crystal of the chloride salt, shows the two ruthenium atoms adopting a pseudo-octahedral geometry without metal–metal bond in accordance with the noble gas rule. All complexes are stable in H2O at 37 °C, but only 1 remains soluble in a 100 mM aqueous NaCl solution, while significant percentages (30–60 %) of 2–6 precipitate as chloride salts under these conditions. The 4-methylphenylthiolato complexes (R = met) are highly cytotoxic towards human ovarian cancer cells, the IC50 values being in the sub-micromolar range, while the 4-methylcoumarin-7-yl thiolato complexes (R = mco) are only slightly cytotoxic. Complexes 1 and 3 show the highest in vitro anticancer activity with IC50 values inferior to 0.06 μM for the A2780 cell line. The results demonstrate that the arene ligand is an important parameter that should be more systematically evaluated when designing new half-sandwich organometallic complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution of trivalent and tetravalent cerium, Ce(III) and Ce(IV) respectively, in a lateritic profile from Madagascar, has been characterized by X-ray-absorption near-edge structure (XANES) spectroscopy at the Ce LIII-edge on the LUCIA beamline (SOLEIL synchrotron, France). XANES spectra were acquired on bulk-rock samples as well as on specific lateritic minerals or polymineral zones (in-situ measurements) of the tonalite bedrock and the three overlying weathered horizons (C-, B- and A-horizons). Geochemically, the bedrock, and the A- and C-horizons show similar rare earth element content (REE = 363–405 mg/kg). They also display the same positive Ce-anomaly (CeCN/Ce∗ = 1.12–1.45), which is therefore likely to be inherited from the bedrock. In the B-horizon, the higher REE content (REE = 2194 mg/kg) and the larger Ce-anomaly (CeCN/Ce∗ = 4.26) are consistent with an accumulation zone caused by the evaporation of groundwater during the dry season. There is a good agreement between the Ce(III)/Cetotal ratio (XCe(III)) deduced from the positive Ce-anomaly (bulk-rock geochemical data) and that derived from XANES spectroscopy on the same bulk-rock samples (BR-XCe(III)-XANES) in the bedrock, and the C- and B-horizons. In the A-horizon, XANES measurements on bulk rock and minerals revealed a higher BR-XCe(III)-XANES (up to 100%) compared to the XCe(III) deduced from geochemical data (XCe(III) = 79%). The preservation of a positive Ce-anomaly in the A-horizon suggests that the Ce mobilization and redistribution during weathering occurred with no significant Ce fractionation from other trivalent REE. Remarkably, the only investigated sample where cerianite is observed belongs to the B-horizon. Within this horizon, Ce oxidation state varies depending on the microstructural position (porosity, cracks, clay-rich groundmass). The highest Ce(IV) concentrations are measured in cerianite (and aluminophosphates) localized in pores at the vicinity of Mn-rich domains (XCe(III)-XANES = 30–51%). Therefore, Ce fractionation from other REE is attributed to a Ce oxidation and precipitation potentially assisted by oxyhydroxide scavenging. In the C-horizon, Ce(III) and Ce(IV) are mainly distributed in REE-minerals of the rhabdophane group found in pores and cracks. The similarity between the Ce(III) proportion of rhabdophane grains (XCe(III)-XANES = 74–89%) with that of the bedrock (BR-XCe(III)-XANES = 79%) suggests no significant fractionation of Ce(III) and Ce(IV) between solution and mineral during the successive stages of primary REE-mineral alteration, transport in solution and secondary precipitation in the incipient stages of weathering. Overall, our novel spectroscopic approach shows that Ce is not necessarily oxidized nor fractionated from other REE during weathering in lateritic conditions. This implies that like Ce(III), Ce(IV) can be mobilized in aqueous fluids during weathering, possibly thanks to complexation with organic molecules, and can precipitate together with Ce(III) in secondary REE-bearing minerals. The corollary is that (paleo)redox reconstructions in soils and/or sediments based on Ce-anomaly in weathered rocks or minerals must be interpreted with caution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a general consensus that healthy soils are pivotal for food security. Food production is one of the main ecosystem services provided by and thus dependent on well-functioning soils. There are also intrinsic connections between the four pillars of food security: food availability, access, utilization, and stability; with how soils are managed, accessed and secured, in particular by food insecure and vulnerable populations. On the other hand, socio-political and economic processes that precipitate inequalities and heighten vulnerabilities among poor populations often increase pressure on soils due to unsustainable forms of land use and poor agricultural practises. This has often led to scenarios that can be described as: ‘poor soils, empty stomachs (hungry people) and poor livelihoods.' In 2015, in particular, as we head towards approval of the ‘Sustainable Development Goals' (SDGs), the role of Financing for Development is debated and agreed upon and a new climate pact is signed – these three political dimensions define how a new post-2015 agenda needs to be people-smart as well as resource-smart. For proposed SDG 2 (Food Security and Hunger), there can be so resolution without addressing people, policies and institutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experience is lacking with mineral scaling and corrosion in enhanced geothermal systems (EGS) in which surface water is circulated through hydraulically stimulated crystalline rocks. As an aid in designing EGS projects we have conducted multicomponent reactive-transport simulations to predict the likely characteristics of scales and corrosion that may form when exploiting heat from granitoid reservoir rocks at ∼200 °C and 5 km depth. The specifications of an EGS project at Basel, Switzerland, are used to constrain the model. The main water–rock reactions in the reservoir during hydraulic stimulation and the subsequent doublet operation were identified in a separate paper (Alt-Epping et al., 2013b). Here we use the computed composition of the reservoir fluid to (1) predict mineral scaling in the injection and production wells, (2) evaluate methods of chemical geothermometry and (3) identify geochemical indicators of incipient corrosion. The envisaged heat extraction scheme ensures that even if the reservoir fluid is in equilibrium with quartz, cooling of the fluid will not induce saturation with respect to amorphous silica, thus eliminating the risk of silica scaling. However, the ascending fluid attains saturation with respect to crystalline aluminosilicates such as albite, microcline and chlorite, and possibly with respect to amorphous aluminosilicates. If no silica-bearing minerals precipitate upon ascent, reservoir temperatures can be predicted by classical formulations of silica geothermometry. In contrast, Na/K concentration ratios in the production fluid reflect steady-state conditions in the reservoir rather than albite–microcline equilibrium. Thus, even though igneous orthoclase is abundant in the reservoir and albite precipitates as a secondary phase, Na/K geothermometers fail to yield accurate temperatures. Anhydrite, which is present in fractures in the Basel reservoir, is predicted to dissolve during operation. This may lead to precipitation of pyrite and, at high exposure of anhydrite to the circulating fluid, of hematite scaling in the geothermal installation. In general, incipient corrosion of the casing can be detected at the production wellhead through an increase in H2(aq) and the enhanced precipitation of Fe-bearing aluminosilicates. The appearance of magnetite in scales indicates high corrosion rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The efficiency of sputtered refractory elements by H+ and He++ solar wind ions from Mercury's surface and their contribution to the exosphere are studied for various solar wind conditions. A 3D solar wind-planetary interaction hybrid model is used for the evaluation of precipitation maps of the sputter agents on Mercury's surface. By assuming a global mineralogical surface composition, the related sputter yields are calculated by means of the 2013 SRIM code and are coupled with a 3D exosphere model. Because of Mercury's magnetic field, for quiet and nominal solar wind conditions the plasma can only precipitate around the polar areas, while for extreme solar events (fast solar wind, coronal mass ejections, interplanetary magnetic clouds) the solar wind plasma has access to the entire dayside. In that case the release of particles form the planet's surface can result in an exosphere density increase of more than one order of magnitude. The corresponding escape rates are also about an order of magnitude higher. Moreover, the amount of He++ ions in the precipitating solar plasma flow enhances also the release of sputtered elements from the surface in the exosphere. A comparison of our model results with MESSENGER observations of sputtered Mg and Ca elements in the exosphere shows a reasonable quantitative agreement. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable isotope analyses of discrete seasonal layers from a 108-yr annually laminated freeze-core from Baldeg-gersee, a small, eutrophic lake in central Switzerland, provide information on the climatological and environmental factors, including lake eutrophication, that control oxygen and carbon isotopic composition of epilimnic biologically induced calcite precipitate. During the last 100 yr, Baldeggersee has undergone major increases in productivity and eutrophication in response to nutrient loading from agriculture and industrialization in the lake's watershed. Calibration of the isotopic signal in Baldeggersee to historical limnological data quantitatively links evidence of isotopic depletion in the sedimented calcite to trophic state of the lake. δ18O values from the spring/summer “light” sediment layers steadily diverged to more depleted values in response to historical eutrophication: measured δ18O values were up to 21.5‰ more negative than calculated equilibrium δ18O values. Evidence for 13C depletion in the calcite, relative to equilibrium values, is more difficult to ascertain because of an overall dominance of isotopic enrichment in the dissolved inorganic pool as productivity in Baldeggersee increases. A positive association exists between the degree of oxygen-18 depletion and the calcite crystal size. Thus, large amorphous calcite grains can be used as a proxy for recognizing apparent isotopic nonequilibrium in sediment sequences from highly productive lacustrine environments from all geologic time scales. In contrast to the light layers, the oxygen isotopic composition of the calcite in the late summer/fall “dark” sediment layers is unaffected by the apparent isotope nonequilibrium. Oxygen and carbon isotope values from the dark laminae in the Baldeggersee sediment therefore provide environmental and climatological proxies that can be calibrated with known environmental and regional climate data for the last century.