920 resultados para POVIDONE-IODINE IRRIGATION
Resumo:
This study sought to evaluate the efficacy of passive ultrasonic irrigation (PUI) on removing the smear layer and debris from root dentin using scanning electron microscopy (SEM). Twenty-five bovine incisors were manually prepared and divided into three groups according to the final irrigation protocol: EDTA, final irrigation with 12 mL of 17% EDTA for 3 minutes followed by 5 mL of 2.5% NaOCl; EDTA=PUI, final flush with 4 mL of 17% EDTA and PUI for 30 seconds. These procedures were repeated three times to standardize the volume of the irrigant. Control group, after preparation, the specimens were irrigated only with 17 mL of 2.5% NaOCl. The roots were fractured and analyzed using SEM. The intragroup analysis revealed that the EDTA=PUI protocol removed a higher amount of debris at the cervical third (P 5 0.03). The intergroup analysis revealed that EDTA=PUI presented the lowest amount of debris at the cervical third (P 5 0.007). Smear layer scores were higher in the control group compared with the EDTA and EDTA=PUI groups, but only at the cervical third (P 50.02). None of the final irrigant protocols completely removed the smear layer and debris. EDTA=PUI only improved the removal of debris at the cervical third.
Resumo:
FAPESP #2010/16002-4
Resumo:
Objectives. To evaluate if the incorporation of antimicrobial compounds to chelating agents or the use of chelating agents with antimicrobial activity as 7% maleic acid and peracetic acid show similar disinfection ability in comparison to conventional irrigants as sodium hypochlorite or iodine potassium iodide against biofilms developed on dentin. Materials and methods. The total bio-volume of live cells, the ratio of live cells and the substratum coverage of dentin infected intra-orally and treated with the irrigant solutions: MTAD, Qmix, Smear Clear, 7% maleic acid, 2% iodine potassium iodide, 4% peracetic acid, 2.5% and 5.25% sodium hypochlorite was measured by using confocal microscopy and the live/dead technique. Five samples were used for each irrigant solution. Results. Several endodontic irrigants containing antimicrobials as clorhexidine (Qmix), cetrimide (Smear Clear), maleic acid, iodine compounds or antibiotics (MTAD) lacked an effective antibiofilm activity when the dentin was infected intra-orally. The irrigant solutions 4% peracetic acid and 2.5–5.25% sodium hypochlorite decrease significantly the number of live bacteria in biofilms, providing also cleaner dentin surfaces (p < 0.05). Conclusions. Several chelating agents containing antimicrobials could not remove nor kill significantly biofilms developed on intra-orally infected dentin, with the exception of sodium hypochlorite and 4% peracetic acid. Dissolution ability is mandatory for an appropriate eradication of biofilms attached to dentin.
Resumo:
Although several studies have been conducted to evaluate the uniformity of water application under center pivot irrigation systems, there are few studies concerning the economic perspective of such coefficient. The aim of this study is to present a methodology to accomplish an economic analysis as support for the decision-making to retrofit emitters in center pivot irrigation systems, and to attribute an economic meaning to the uniformity coefficient of water application taking into account the response function productivity to the amount of water applied and the sale price of the crops. In the hypothetic calculation example considering the variation of revenue of potato crop under center pivot irrigation system, it was verified that the area with uniformity coefficient of water application of 90% brought an income increase of BR$ 1,992.00, considering an area about 1,0 ha. Thus, it can be concluded that the methodology presented has met the objectives proposed in the study and made it possible to attribute an economical meaning to the coefficient of water uniformity application.
Resumo:
In this study is presented an economic optimization method to design telescope irrigation laterals (multidiameter) with regular spaced outlets. The proposed analytical hydraulic solution was validated by means of a pipeline composed of three different diameters. The minimum acquisition cost of the telescope pipeline was determined by an ideal arrangement of lengths and respective diameters for each one of the three segments. The mathematical optimization method based on the Lagrange multipliers provides a strategy for finding the maximum or minimum of a function subject to certain constraints. In this case, the objective function describes the acquisition cost of pipes, and the constraints are determined from hydraulic parameters as length of irrigation laterals and total head loss permitted. The developed analytical solution provides the ideal combination of each pipe segment length and respective diameter, resulting in a decreased of the acquisition cost.
Resumo:
The oregano is a plant, rich in essential oil and very used as spice in the preparation of foods. The objective of this paper was to analyze the viability of irrigation for oregano in Presidente Prudente, São Paulo state, Brazil, including economic risk factors, their effect on irrigation total cost, as well as the different pumping kinds. The Monte Carlo simulation was utilized to study the economic factors: fixed cost, labor, maintenance, pumping and water. The use of irrigation for the oregano in the region of Presidente Prudente is indicated because of its economic feasibility and the reduced risks. The average values of the benefit/cost for all water depths tested were higher than 1, indicating viability. The use of irrigation promoted lower risks compared to the non irrigated crop. The micro irrigation system presented greater sensitivity to changes of prices of the equipment associated to the variation of the useful life of the system. The oregano selling price was the most important factor involved in annual net profit. The water cost was the factor of lesser influence on the total cost. Due to the characteristic of high drip irrigation frequency there was no difference between the tariffs based in use hour of electric energy classified as green and blue, which are characterized by applying different rates on the energy consumption and demand according to the hours of day and times of the year. For the studied region it was recommended drip irrigation water management of oregano with the daily application of 100% of pan evaporation Class A using electric motor with tariffs blue or green.
Resumo:
The aim of this study was to evaluate the effect of irrigation regimens on dentin microhardness at the furcation area of mandibular molars, using sodium hypochlorite and ethylenediaminetetraacetic acid (EDTA), individually and in alternation. The occlusal surface and the roots of 20 non-carious extracted human permanent mandibular molars were cut transversally and discarded. The tooth blocks were embedded in acrylic resin and randomly assigned to 4 groups (n=5) according to the irrigating regimens: 1% NaOCl solution, 17% EDTA solution, 1% NaOCl and 17% EDTA and distilled water (control). Knoop microhardness of dentin at the furcation area was evaluated. Data were analyzed using one-way ANOVA and Tukey's multiple comparison tests (α=0.05). The results of this study indicated that all irrigation solutions, except for distilled water (control), decreased dentin microhardness. EDTA did not show a significant difference with NaOCl/EDTA (p>0.05), but showed a significant difference with NaOCl (p<0.01). EDTA and NaOCl/EDTA showed a maximum decrease in microhardness. The 17% EDTA solution, either alone or in combination with 1% NaOCl reduced significantly dentin microhardness at the furcation area of mandibular molars.
Resumo:
Variable rate sprinklers (VRS) have been developed to promote localized water application of irrigated areas. In Precision Irrigation, VRS permits better control of flow adjustment and, at the same time, provides satisfactory radial distribution profiles for various pressures and flow rates are really necessary. The objective of this work was to evaluate the performance and radial distribution profiles of a developed VRS which varies the nozzle cross sectional area by moving a pin in or out using a stepper motor. Field tests were performed under different conditions of service pressure, rotation angles imposed on the pin and flow rate which resulted in maximal water throw radiuses ranging from 7.30 to 10.38 m. In the experiments in which the service pressure remained constant, the maximal throw radius varied from 7.96 to 8.91 m. Averages were used of repetitions performed under conditions without wind or with winds less than 1.3 m s-1. The VRS with the four stream deflector resulted in greater water application throw radius compared to the six stream deflector. However, the six stream deflector had greater precipitation intensities, as well as better distribution. Thus, selection of the deflector to be utilized should be based on project requirements, respecting the difference in the obtained results. With a small opening of the nozzle, the VRS produced small water droplets that visually presented applicability for foliar chemigation. Regarding the comparison between the estimated and observed flow rates, the stepper motor produced excellent results.
Resumo:
The irrigation scheme Eduardo Mondlane, situated in Chókwè District - in the Southern part of the Gaza province and within the Limpopo River Basin - is the largest in the country, covering approximately 30,000 hectares of land. Built by the Portuguese colonial administration in the 1950s to exploit the agricultural potential of the area through cash-cropping, after Independence it became one of Frelimo’s flagship projects aiming at the “socialization of the countryside” and at agricultural economic development through the creation of a state farm and of several cooperatives. The failure of Frelimo’s economic reforms, several infrastructural constraints and local farmers resistance to collective forms of production led to scheme to a state of severe degradation aggravated by the floods of the year 2000. A project of technical rehabilitation initiated after the floods is currently accompanied by a strong “efficiency” discourse from the managing institution that strongly opposes the use of irrigated land for subsistence agriculture, historically a major livelihood strategy for smallfarmers, particularly for women. In fact, the area has been characterized, since the end of the XIX century, by a stable pattern of male migration towards South African mines, that has resulted in an a steady increase of women-headed households (both de jure and de facto). The relationship between land reform, agricultural development, poverty alleviation and gender equality in Southern Africa is long debated in academic literature. Within this debate, the role of agricultural activities in irrigation schemes is particularly interesting considering that, in a drought-prone area, having access to water for irrigation means increased possibilities of improving food and livelihood security, and income levels. In the case of Chókwè, local governments institutions are endorsing the development of commercial agriculture through initiatives such as partnerships with international cooperation agencies or joint-ventures with private investors. While these business models can sometimes lead to positive outcomes in terms of poverty alleviation, it is important to recognize that decentralization and neoliberal reforms occur in the context of financial and political crisis of the State that lacks the resources to efficiently manage infrastructures such as irrigation systems. This kind of institutional and economic reforms risk accelerating processes of social and economic marginalisation, including landlessness, in particular for poor rural women that mainly use irrigated land for subsistence production. The study combines an analysis of the historical and geographical context with the study of relevant literature and original fieldwork. Fieldwork was conducted between February and June 2007 (where I mainly collected secondary data, maps and statistics and conducted preliminary visit to Chókwè) and from October 2007 to March 2008. Fieldwork methodology was qualitative and used semi-structured interviews with central and local Government officials, technical experts of the irrigation scheme, civil society organisations, international NGOs, rural extensionists, and water users from the irrigation scheme, in particular those women smallfarmers members of local farmers’ associations. Thanks to the collaboration with the Union of Farmers’ Associations of Chókwè, she has been able to participate to members’ meeting, to education and training activities addressed to women farmers members of the Union and to organize a group discussion. In Chókwè irrigation scheme, women account for the 32% of water users of the familiar sector (comprising plot-holders with less than 5 hectares of land) and for just 5% of the private sector. If one considers farmers’ associations of the familiar sector (a legacy of Frelimo’s cooperatives), women are 84% of total members. However, the security given to them by the land title that they have acquired through occupation is severely endangered by the use that they make of land, that is considered as “non efficient” by the irrigation scheme authority. Due to a reduced access to marketing possibilities and to inputs, training, information and credit women, in actual fact, risk to see their right to access land and water revoked because they are not able to sustain the increasing cost of the water fee. The myth of the “efficient producer” does not take into consideration the characteristics of inequality and gender discrimination of the neo-liberal market. Expecting small-farmers, and in particular women, to be able to compete in the globalized agricultural market seems unrealistic, and can perpetuate unequal gendered access to resources such as land and water.
Resumo:
Iodine is an essential microelement for human health because it is a constituent of the thyroid hormones that regulate growth and development of the organism. Iodine Deficiency Disorders (IDDs) are believed to be one of the commonest preventable human health problems in the world today, according to the World Health Organization: that diseases include endemic goiter, cretinism and fetal abnormalities, among others, and they are caused by lack of iodine in the diet, that is the main source of iodine. Since iodine intake from food is not enough respect to human needs, this can be remedied through dietary diversification, mineral supplementation, food fortification, or increasing the concentration and/or bioavailability of mineral elements in the edible portions of crops through agricultural intervention or genetic selection (biofortification). The introduction of iodized salt is a strategy widely used and accepted to eradicate iodine deficiency, because it is an inexpensive source of stable iodine. Since the intake of salt, though iodized, must still be limited according to the risk of cardiovascular disease, so the increase of iodine content in plants for the production of functional foods is representing a field of study of particular interest and a potential market. In Italy potatoes enriched with iodine are produced by a patented procedure of agronomic biofortification for the fresh market since several years, furthermore they are recently accepted and recommended by Italian Thyroid Association, as an alternative source of iodine. Researches performed during the PhD course intended to characterize this innovative vegetables products, focusing the attention on different aspects, such as chemistry, agriculture, and quality of fresh and fried potatoes. For this purpose, lipid fraction of raw material was firstly investigated, in order to assess whether the presence of iodine in plant metabolism can affect fatty acid or sterol biosynthesis, according to the hypothesis that iodine can be bounded to polyunsaturated fatty acids of cell membranes, protecting them from peroxydation; phytosterols of plant sterol are also studied because their importance in reducing serum cholesterol, especially in potato plant sterols are also involved in synthesis of glycoalkaloid, a family of steroidal toxic secondary metabolites present in plants of the Solanaceae family. To achieve this goal chromatographic analytical techniques were employed to identify and quantify fatty acids and sterols profile of common and iodine enriched row potatoes. Another aim of the project was to evaluate the effects of frying on the quality of iodine-enriched and common potatoes. Since iodine-enriched potatoes are nowadays produced only for the fresh market, preliminary trials of cultivation under controlled environment were carried out to verify if potato varieties suitable for processing were able to absorb and accumulate iodine in the tuber. In a successive phase, these varieties were grown in the field, to evaluate their potential productivity and quality at harvest and after storage. The best potato variety to be destined for processing purposes, was finally subjected to repeated frying cycles; the effects of lipid oxidation on the composition and quality of both potatoes and frying oil bath were evaluated by chromatographic and spectrophotometric analytical techniques. Special attention were paid on volatile compounds of fried potatoes.
Resumo:
It has been demonstrated that iodine does have an important influence on atmospheric chemistry, especially the formation of new particles and the enrichment of iodine in marine aerosols. It was pointed out that the most probable chemical species involved in the production or growth of these particles are iodine oxides, produced photochemically from biogenic halocarbon emissions and/or iodine emission from the sea surface. However, the iodine chemistry from gaseous to particulate phase in the coastal atmosphere and the chemical nature of the condensing iodine species are still not understood. A Tenax / Carbotrap adsorption sampling technique and a thermo-desorption / cryo-trap / GC-MS system has been further developed and improved for the volatile organic iodine species in the gas phase. Several iodo-hydrocarbons such as CH3I, C2H5I, CH2ICl, CH2IBr and CH2I2 etc., have been measured in samples from a calibration test gas source (standards), real air samples and samples from seaweeds / macro-algae emission experiments. A denuder sampling technique has been developed to characterise potential precursor compounds of coastal particle formation processes, such as molecular iodine in the gas phase. Starch, TMAH (TetraMethylAmmonium Hydroxide) and TBAH (TetraButylAmmonium Hydroxide) coated denuders were tested for their efficiencies to collect I2 at the inner surface, followed by a TMAH extraction and ICP/MS determination, adding tellurium as an internal standard. The developed method has been proved to be an effective, accurate and suitable process for I2 measurement in the field, with the estimated detection limit of ~0.10 ng∙L-1 for a sampling volume of 15 L. An H2O/TMAH-Extraction-ICP/MS method has been developed for the accurate and sensitive determination of iodine species in tropospheric aerosol particles. The particle samples were collected on cellulose-nitrate filters using conventional filter holders or on cellulose nitrate/tedlar-foils using a 5-stage Berner impactor for size-segregated particle analysis. The water soluble species as IO3- and I- were separated by anion exchanging process after water extraction. Non-water soluble species including iodine oxide and organic iodine were digested and extracted by TMAH. Afterwards the triple samples were analysed by ICP/MS. The detection limit for particulate iodine was determined to be 0.10~0.20 ng•m-3 for sampling volumes of 40~100 m3. The developed methods have been used in two field measurements in May 2002 and September 2003, at and around the Mace Head Atmospheric Research Station (MHARS) located at the west coast of Ireland. Elemental iodine as a precursor of the iodine chemistry in the coastal atmosphere, was determined in the gas phase at a seaweed hot-spot around the MHARS, showing I2 concentrations were in the range of 0~1.6 ng∙L-1 and indicating a positive correlation with the ozone concentration. A seaweed-chamber experiment performed at the field measurement station showed that the I2 emission rate from macro-algae was in the range of 0.019~0.022 ng•min-1•kg-1. During these experiments, nanometer-particle concentrations were obtained from the Scanning Mobility Particle Sizer (SMPS) measurements. Particle number concentrations were found to have a linear correlation with elemental iodine in the gas phase of the seaweeds chamber, showing that gaseous I2 is one of the important precursors of the new particle formation in the coastal atmosphere. Iodine contents in the particle phase were measured in both field campaigns at and around the field measurement station. Total iodine concentrations were found to be in the range of 1.0 ~ 21.0 ng∙m-3 in the PM2.5 samples. A significant correlation between the total iodine concentrations and the nanometer-particle number concentrations was observed. The particulate iodine species analysis indicated that iodide contents are usually higher than those of iodate in all samples, with ratios in the range of 2~5:1. It is possible that those water soluble iodine species are transferred through the sea-air interface into the particle phase. The ratio of water soluble (iodate + iodide) and non-water soluble species (probably iodine oxide and organic iodine compounds) was observed to be in the range of 1:1 to 1:2. It appears that higher concentrated non-water soluble species, as the products of the photolysis from the gas phase into the particle phase, can be obtained in those samples while the nucleation events occur. That supports the idea that iodine chemistry in the coastal boundary layer is linked with new particle formation events. Furthermore, artificial aerosol particles were formed from gaseous iodine sources (e.g. CH2I2) using a laboratory reaction-chamber experiment, in which the reaction constant of the CH2I2 photolysis was calculated to be based upon the first order reaction kinetic. The end products of iodine chemistry in the particle phase were identified and quantified.
Resumo:
Iodine chemistry plays an important role in the tropospheric ozone depletion and the new particle formation in the Marine Boundary Layer (MBL). The sources, reaction pathways, and the sinks of iodine are investigated using lab experiments and field observations. The aims of this work are, firstly, to develop analytical methods for iodine measurements of marine aerosol samples especially for iodine speciation in the soluble iodine; secondly, to apply the analytical methods in field collected aerosol samples, and to estimate the characteristics of aerosol iodine in the MBL. Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) was the technique used for iodine measurements. Offline methods using water extraction and Tetra-methyl-ammonium-hydroxide (TMAH) extraction were applied to measure total soluble iodine (TSI) and total insoluble iodine (TII) in the marine aerosol samples. External standard calibration and isotope dilution analysis (IDA) were both conducted for iodine quantification and the limits of detection (LODs) were both 0.1 μg L-1 for TSI and TII measurements. Online couplings of Ion Chromatography (IC)-ICP-MS and Gel electrophoresis (GE)-ICP-MS were both developed for soluble iodine speciation. Anion exchange columns were adopted for IC-ICP-MS systems. Iodide, iodate, and unknown signal(s) were observed in these methods. Iodide and iodate were separated successfully and the LODs were 0.1 and 0.5 μg L-1, respectively. Unknown signals were soluble organic iodine species (SOI) and quantified by the calibration curve of iodide, but not clearly identified and quantified yet. These analytical methods were all applied to the iodine measurements of marine aerosol samples from the worldwide filed campaigns. The TSI and TII concentrations (medians) in PM2.5 were found to be 240.87 pmol m-3 and 105.37 pmol m-3 at Mace Head, west coast of Ireland, as well as 119.10 pmol m-3 and 97.88 pmol m-3 in the cruise campaign over the North Atlantic Ocean, during June – July 2006. Inorganic iodine, namely iodide and iodate, was the minor iodine fraction in both campaigns, accounting for 7.3% (median) and 5.8% (median) in PM2.5 iodine at Mace Head and over the North Atlantic Ocean, respectively. Iodide concentrations were higher than iodate in most of the samples. In the contrast, more than 90% of TSI was SOI and the SOI concentration was correlated significantly with the iodide concentration. The correlation coefficients (R2) were both higher than 0.5 at Mace Head and in the first leg of the cruise. Size fractionated aerosol samples collected by 5 stage Berner impactor cascade sampler showed similar proportions of inorganic and organic iodine. Significant correlations were obtained in the particle size ranges of 0.25 – 0.71 μm and 0.71 – 2.0 μm between SOI and iodide, and better correlations were found in sunny days. TSI and iodide existed mainly in fine particle size range (< 2.0 μm) and iodate resided in coarse range (2.0 – 10 μm). Aerosol iodine was suggested to be related to the primary iodine release in the tidal zone. Natural meteorological conditions such as solar radiation, raining etc were observed to have influence on the aerosol iodine. During the ship campaign over the North Atlantic Ocean (January – February 2007), the TSI concentrations (medians) ranged 35.14 – 60.63 pmol m-3 among the 5 stages. Likewise, SOI was found to be the most abundant iodine fraction in TSI with a median of 98.6%. Significant correlation also presented between SOI and iodide in the size range of 2.0 – 5.9 μm. Higher iodate concentration was again found in the higher particle size range, similar to that at Mace Head. Airmass transport from the biogenic bloom region and the Antarctic ice front sector was observed to play an important role in aerosol iodine enhancement. The TSI concentrations observed along the 30,000 km long cruise round trip from East Asia to Antarctica during November 2005 – March 2006 were much lower than in the other campaigns, with a median of 6.51 pmol m-3. Approximately 70% of the TSI was SOI on average. The abundances of inorganic iodine including iodine and iodide were less than 30% of TSI. The median value of iodide was 1.49 pmol m-3, which was more than four fold higher than that of iodate (median, 0.28 pmol m-3). Spatial variation indicated highest aerosol iodine appearing in the tropical area. Iodine level was considerably lower in coastal Antarctica with the TSI median of 3.22 pmol m-3. However, airmass transport from the ice front sector was correlated with the enhance TSI level, suggesting the unrevealed source of iodine in the polar region. In addition, significant correlation between SOI and iodide was also shown in this campaign. A global distribution in aerosol was shown in the field campaigns in this work. SOI was verified globally ubiquitous due to the presence in the different sampling locations and its high proportion in TSI in the marine aerosols. The correlations between SOI and iodide were obtained not only in different locations but also in different seasons, implying the possible mechanism of iodide production through SOI decomposition. Nevertheless, future studies are needed for improving the current understanding of iodine chemistry in the MBL (e.g. SOI identification and quantification as well as the update modeling involving organic matters).
Resumo:
Nuclear medicine imaging techniques such as PET are of increasing relevance in pharmaceutical research being valuable (pre)clinical tools to non-invasively assess drug performance in vivo. Therapeutic drugs, e.g. chemotherapeutics, often suffer from a poor balance between their efficacy and toxicity. Here, polymer based drug delivery systems can modulate the pharmacokinetics of low Mw therapeutics (prolonging blood circulation time, reducing toxic side effects, increasing target site accumulation) and therefore leading to a more efficient therapy. In this regard, poly-N-(2-hydroxypropyl)-methacrylamide (HPMA) constitutes a promising biocompatible polymer. Towards the further development of these structures, non-invasive PET imaging allows insight into structure-property relationships in vivo. This performant tool can guide design optimization towards more effective drug delivery. Hence, versatile radiolabeling strategies need to be developed and establishing 18F- as well as 131I-labeling of diverse HPMA architectures forms the basis for short- as well as long-term in vivo evaluations. By means of the prosthetic group [18F]FETos, 18F-labeling of distinct HPMA polymer architectures (homopolymers, amphiphilic copolymers as well as block copolymers) was successfully accomplished enabling their systematic evaluation in tumor bearing rats. These investigations revealed pronounced differences depending on individual polymer characteristics (molecular weight, amphiphilicity due to incorporated hydrophobic laurylmethacrylate (LMA) segments, architecture) as well as on the studied tumor model. Polymers showed higher uptake for up to 4 h p.i. into Walker 256 tumors vs. AT1 tumors (correlating to a higher cellular uptake in vitro). Highest tumor concentrations were found for amphiphilic HPMA-ran-LMA copolymers in comparison to homopolymers and block copolymers. Notably, the random LMA copolymer P4* (Mw=55 kDa, 25% LMA) exhibited most promising in vivo behavior such as highest blood retention as well as tumor uptake. Further studies concentrated on the influence of PEGylation (‘stealth effect’) in terms of improving drug delivery properties of defined polymeric micelles. Here, [18F]fluoroethylation of distinct PEGylated block copolymers (0%, 1%, 5%, 7%, 11% of incorporated PEG2kDa) enabled to systematically study the impact of PEG incorporation ratio and respective architecture on the in vivo performance. Most strikingly, higher PEG content caused prolonged blood circulation as well as a linear increase in tumor uptake (Walker 256 carcinoma). Due to the structural diversity of potential polymeric carrier systems, further versatile 18F-labeling strategies are needed. Therefore, a prosthetic 18F-labeling approach based on the Cu(I)-catalyzed click reaction was established for HPMA-based polymers, providing incorporation of fluorine-18 under mild conditions and in high yields. On this basis, a preliminary µPET study of a HPMA-based polymer – radiolabeled via the prosthetic group [18F]F-PEG3-N3 – was successfully accomplished. By revealing early pharmacokinetics, 18F-labeling enables to time-efficiently assess the potential of HPMA polymers for efficient drug delivery. Yet, investigating the long-term fate is essential, especially regarding prolonged circulation properties and passive tumor accumulation (EPR effect). Therefore, radiolabeling of diverse HPMA copolymers with the longer-lived isotope iodine-131 was accomplished enabling in vivo evaluation of copolymer P4* over several days. In this study, tumor retention of 131I-P4* could be demonstrated at least over 48h with concurrent blood clearance thereby confirming promising tumor targeting properties of amphiphilic HPMA copolymer systems based on the EPR effect.
Resumo:
Recent studies found that soil-atmosphere coupling features, through soil moisture, have been crucial to simulate well heat waves amplitude, duration and intensity. Moreover, it was found that soil moisture depletion both in Winter and Spring anticipates strong heat waves during the Summer. Irrigation in geophysical studies can be intended as an anthropogenic forcing to the soil-moisture, besides changes in land proprieties. In this study, the irrigation was add to a LAM hydrostatic model (BOLAM) and coupled with the soil. The response of the model to irrigation perturbation is analyzed during a dry Summer season. To identify a dry Summer, with overall positive temperature anomalies, an extensive climatological characterization of 2015 was done. The method included a statistical validation on the reference period distribution used to calculate the anomalies. Drought conditions were observed during Summer 2015 and previous seasons, both on the analyzed region and the Alps. Moreover July was characterized as an extreme event for the referred distribution. The numerical simulation consisted on the summer season of 2015 and two run: a control run (CTR), with the soil coupling and a perturbed run (IPR). The perturbation consists on a mask of land use created from the Cropland FAO dataset, where an irrigation water flux of 3 mm/day was applied from 6 A.M. to 9 A.M. every day. The results show that differences between CTR and IPR has a strong daily cycle. The main modifications are on the air masses proprieties, not on to the dynamics. However, changes in the circulation at the boundaries of the Po Valley are observed, and a diagnostic spatial correlation of variable differences shows that soil moisture perturbation explains well the variation observed in the 2 meters height temperature and in the latent heat fluxes.On the other hand, does not explain the spatial shift up and downslope observed during different periods of the day. Given the results, irrigation process affects the atmospheric proprieties on a larger scale than the irrigation, therefore it is important in daily forecast, particularly during hot and dry periods.