989 resultados para POSITIVE-PRESSURE VENTILATION
Resumo:
Introduction: Prognostic factors are used in the Intensive Care Unit (ICU) to predict morbidity and mortality , especially in patients on mechanical ventilation (MV ) . Training protocols are used in MV patients with the aim of promoting the success of the weaning process. Objective: To assess which variables determine the outcome of patients undergoing mechanical ventilation and compare the effects of two protocols for weaning. Method: Patients under MV for more than 48 hours had collected the following information: sex, age , ideal weight, height , Acute Physiology and Chronic Health Evaluation (APACHE II), risk of mortality, Glasgow Coma Scale (GCS) and index Quick and perfunctory (IRRS) breathing. Patients with unsuccessful weaning performed one of weaning protocols: Progressive T - tube or tube - T + Threshold ® IMT. Patients were compared for outcome (death or non- death in the ICU ) and the protocols through the t test or Mann-Whitney test was considered significant when P <0.05. Results: Of 128 patients evaluated 56.25% were men, the mean age was 60.05 ± 17.85 years and 40.62 % patients died, and they had higher APACHE II scores, mortality risk, time VM and IRRS GCS and the lower value (p<0.05). The age, initial and final maximal inspiratory pressure, time of weaning and duration of MV was similar between protocols. Conclusion: The study suggests that the GCS, APACHE II risk of mortality, length of MV and IRRS variables determined the evolution of MV patients in this sample. Not found differences in the variables studied when comparing the two methods of weaning.
Resumo:
The relationship between diastolic blood pressure and the variables total cumulative working time and age was examined by regression analysis. The study was carried out among 839 bus drivers and conductors, users of an occupational health center in Campinas, S. Paulo State, Brazil. The main results were a positive association between diastolic blood pressure and cumulative working time, as well as an interaction between this variable and the bus worker's age.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
OBJECTIVES: The aim of this manuscript is to describe the first year of our experience using extracorporeal membrane oxygenation support. METHODS: Ten patients with severe refractory hypoxemia, two with associated severe cardiovascular failure, were supported using venous-venous extracorporeal membrane oxygenation (eight patients) or veno-arterial extracorporeal membrane oxygenation (two patients). RESULTS: The median age of the patients was 31 yr (range 14-71 yr). Their median simplified acute physiological score three (SAPS3) was 94 (range 84-118), and they had a median expected mortality of 95% (range 87-99%). Community-acquired pneumonia was the most common diagnosis (50%), followed by P. jiroveci pneumonia in two patients with AIDS (20%). Six patients were transferred from other ICUs during extracorporeal membrane oxygenation support, three of whom were transferred between ICUs within the hospital (30%), two by ambulance (20%) and one by helicopter (10%). Only one patient (10%) was anticoagulated with heparin throughout extracorporeal membrane oxygenation support. Eighty percent of patients required continuous venous-venous hemofiltration. Three patients (30%) developed persistent hypoxemia, which was corrected using higher positive end-expiratory pressure, higher inspired oxygen fractions, recruitment maneuvers, and nitric oxide. The median time on extracorporeal membrane oxygenation support was five (range 3-32) days. The median length of the hospital stay was 31 (range 3-97) days. Four patients (40%) survived to 60 days, and they were free from renal replacement therapy and oxygen support. CONCLUSIONS: The use of extracorporeal membrane oxygenation support in severely ill patients is possible in the presence of a structured team. Efforts must be made to recognize the necessity of extracorporeal respiratory support at an early stage and to prompt activation of the extracorporeal membrane oxygenation team.
Resumo:
BACKGROUND: Positive expiratory pressure (PEP) is used for airway clearance in cystic fibrosis (CF) patients. Hypertonic saline (HTS) aerosol increases sputum expectoration volume and may improve respiratory secretion properties. CPAP may also be used to maintain airway patency and mobilize secretions. To evaluate if CPAP would increase the beneficial clearance effect of HTS in subjects with CF, we investigated the effects of CPAP alone and CPAP followed by HTS on sputum physical properties and expectoration volume in CF subjects. METHODS: In this crossover study, 15 CF subjects (mean age 19 y old) were randomized to interventions, 48 hours apart: directed coughs (control), CPAP at 10 cm H2O, HTS 7%, and both CPAP and HTS (CPAP+HTS). Sputum collection was performed at baseline and after interventions. Expectorated volume was determined and in vitro sputum properties were analyzed for contact angle and cough clearability. RESULTS: There were no significant differences between any treatment in arterial blood pressure, heart rate, or pulse oximetry, between the 2 time points. HTS and CPAP+HTS improved cough clearability by 50% (P = .001) and expectorated volume secretion by 530% (P = .001). However, there were no differences between control and CPAP on sputum contact angle, cough clearability, or volume of expectorated secretion. CONCLUSIONS: CPAP alone had no effect on mucus clearance, sputum properties, or expectorated volume, and did not potentiate the effect of HTS alone in CF subjects.
Resumo:
Background. Acute normovolemic hemodilution (ANH) is an alternative to blood transfusion in surgeries involving blood loss. This experimental study was designed to evaluate whether pulse pressure variation (PPV) would be an adequate tool for monitoring changes in preload during ANH, as assessed by transesophageal echocardiography. Methods. Twenty-one anesthetized and mechanically ventilated pigs were randomized into three groups: CTL (control), HES (hemodilution with 6% hydroxyethyl starch at a 1:1 ratio) or NS (hemodilution with saline 0.9% at a 3:1 ratio). Hemodilution was performed in animals of groups NS and HES in two stages, with target hematocrits 22% and 15%, achieved at 30-minute intervals. After two hours, 50% of the blood volume withdrawn was transfused and animals were monitored for another hour. Statistical analysis was based on ANOVA for repeated measures followed by multiple comparison test (P<0.05). Pearson's correlations were performed between changes in left ventricular end-diastolic volume (LVEDV) and PPV, central venous pressure (CVP) and pulmonary artery occlusion pressure (PAOP). Results. Group NS received a significantly greater amount of fluids during ANH (NS, 900 +/- 168 mL vs. HES, 200 +/- 50 mL, P<0.05) and presented greater urine output (NS, 2643 +/- 1097mL vs. HES, 641 +/- 338mL, P<0.001). Significant decreases in LVEDV were observed in group NS from completion of ANH until transfusion. In group HES, only increases in LVEDV were observed, at the end of ANH and at transfusion. Such changes in LVEDV (Delta LVEDV) were better reflected by changes in PPV (Delta PPV, R=-0.62) than changes in CVP (Delta CVP R=0.32) or in PAOP (Delta PAOP, R=0.42, respectively). Conclusion. Changes in preload during ANH were detected by changes in PPV. Delta PPV was superior to Delta PAOP and Delta CVP to this end. (Minerva Anestesiol 2012;78:426-33)
Resumo:
We hypothesized that: (1) intraabdominal hypertension increases pulmonary inflammatory and fibrogenic responses in acute lung injury (ALI); (2) in the presence of intraabdominal hypertension, higher tidal volume reduces lung damage in extrapulmonary ALI, but not in pulmonary ALI. Wistar rats were randomly allocated to receive Escherichia coli lipopolysaccharide intratracheally (pulmonary ALI) or intraperitoneally (extrapulmonary ALI). After 24 h, animals were randomized into subgroups without or with intraabdominal hypertension (15 mmHg) and ventilated with positive end expiratory pressure = 5 cmH(2)O and tidal volume of 6 or 10 ml/kg during 1 h. Lung and chest wall mechanics, arterial blood gases, lung and distal organ histology, and interleukin (IL)-1 beta, IL-6, caspase-3 and type III procollagen (PCIII) mRNA expressions in lung tissue were analyzed. With intraabdominal hypertension, (1) chest-wall static elastance increased, and PCIII, IL-1 beta, IL-6, and caspase-3 expressions were more pronounced than in animals with normal intraabdominal pressure in both ALI groups; (2) in extrapulmonary ALI, higher tidal volume was associated with decreased atelectasis, and lower IL-6 and caspase-3 expressions; (3) in pulmonary ALI, higher tidal volume led to higher IL-6 expression; and (4) in pulmonary ALI, liver, kidney, and villi cell apoptosis was increased, but not affected by tidal volume. Intraabdominal hypertension increased inflammation and fibrogenesis in the lung independent of ALI etiology. In extrapulmonary ALI associated with intraabdominal hypertension, higher tidal volume improved lung morphometry with lower inflammation in lung tissue. Conversely, in pulmonary ALI associated with intraabdominal hypertension, higher tidal volume increased IL-6 expression.
Resumo:
Introduction: The benefits of higher positive end expiratory pressure (PEEP) in patients with acute respiratory distress syndrome (ARDS) have been modest, but few studies have fully tested the "open-lung hypothesis". This hypothesis states that most of the collapsed lung tissue observed in ARDS can be reversed at an acceptable clinical cost, potentially resulting in better lung protection, but requiring more intensive maneuvers. The short-/middle-term efficacy of a maximum recruitment strategy (MRS) was recently described in a small physiological study. The present study extends those results, describing a case-series of non-selected patients with early, severe ARDS submitted to MRS and followed until hospital discharge or death. Methods: MRS guided by thoracic computed tomography (CT) included two parts: a recruitment phase to calculate opening pressures (incremental steps under pressure-controlled ventilation up to maximum inspiratory pressures of 60 cmH(2)O, at constant driving-pressures of 15 cmH(2)O); and a PEEP titration phase (decremental PEEP steps from 25 to 10 cmH2O) used to estimate the minimum PEEP to keep lungs open. During all steps, we calculated the size of the non-aerated (-100 to +100 HU) compartment and the recruitability of the lungs (the percent mass of collapsed tissue re-aerated from baseline to maximum PEEP). Results: A total of 51 severe ARDS patients, with a mean age of 50.7 years (84% primary ARDS) was studied. The opening plateau-pressure was 59.6 (+/- 5.9 cmH(2)O), and the mean PEEP titrated after MRS was 24.6 (+/- 2.9 cmH(2)O). Mean PaO2/FiO(2) ratio increased from 125 (+/- 43) to 300 (+/- 103; P < 0.0001) after MRS and was sustained above 300 throughout seven days. Non-aerated parenchyma decreased significantly from 53.6% (interquartile range (IQR): 42.5 to 62.4) to 12.7% (IQR: 4.9 to 24.2) (P < 0.0001) after MRS. The potentially recruitable lung was estimated at 45% (IQR: 25 to 53). We did not observe major barotrauma or significant clinical complications associated with the maneuver. Conclusions: MRS could efficiently reverse hypoxemia and most of the collapsed lung tissue during the course of ARDS, compatible with a high lung recruitability in non-selected patients with early, severe ARDS. This strategy should be tested in a prospective randomized clinical trial.
Resumo:
Abstract Introduction In acute lung injury (ALI), elevation of procollagen type III (PC III) occurs early and has an adverse impact on outcome. We examined whether different high-inflation strategies of mechanical ventilation (MV) in oleic acid (OA) ALI alter regional expression of PC III. Methods We designed an experimental, randomized, and controlled protocol in which rats were allocated to two control groups (no injury, recruited [alveolar recruitment maneuver after tracheotomy without MV; n = 4 rats] and control [n = 5 rats]) or four injured groups (one exposed to OA only [n = 10 rats] and three OA-injured and ventilated). The three OA-injured groups were ventilated for 1 hour according to the following strategies: LVHP-S (low volume-high positive end-expiratory pressure [PEEP], supine; n = 10 rats, tidal volume [VT] = 8 ml/kg, PEEP = 12 cm H2O), HVLP-S (high volume-low PEEP, supine; n = 10 rats, VT = 20 ml/kg, PEEP = 5 cm H2O), and HVLP-P (high volume-low PEEP, prone; n = 10 rats). Northern blot analysis for PC III and interleukin-1-beta (IL-1β) and polymorphonuclear infiltration index (PMI) counting were performed in nondependent and dependent regions. Regional differences between groups were assessed by two-way analysis of variance after logarithmic transformation and post hoc tests. Results A significant interaction for group and region effects was observed for PC III (p = 0.012) with higher expression in the nondependent region for HVLP-S and LVHP-S, intermediate for OA and HVLP-P, and lower for control (group effect, p < 0.00001, partial η2 = 0.767; region effect, p = 0.0007, partial η2 = 0.091). We found high expression of IL-1β (group effect, p < 0.00001, partial η2 = 0.944) in the OA, HVLP-S, and HVLP-P groups without regional differences (p = 0.16). PMI behaved similarly (group effect, p < 0.00001, partial η2 = 0.832). Conclusion PC III expression is higher in nondependent regions and in ventilatory strategies that caused overdistension. This response was partially attenuated by prone positioning.
Resumo:
Abstract Introduction Several studies have shown that maximizing stroke volume (or increasing it until a plateau is reached) by volume loading during high-risk surgery may improve post-operative outcome. This goal could be achieved simply by minimizing the variation in arterial pulse pressure (ΔPP) induced by mechanical ventilation. We tested this hypothesis in a prospective, randomized, single-centre study. The primary endpoint was the length of postoperative stay in hospital. Methods Thirty-three patients undergoing high-risk surgery were randomized either to a control group (group C, n = 16) or to an intervention group (group I, n = 17). In group I, ΔPP was continuously monitored during surgery by a multiparameter bedside monitor and minimized to 10% or less by volume loading. Results Both groups were comparable in terms of demographic data, American Society of Anesthesiology score, type, and duration of surgery. During surgery, group I received more fluid than group C (4,618 ± 1,557 versus 1,694 ± 705 ml (mean ± SD), P < 0.0001), and ΔPP decreased from 22 ± 75 to 9 ± 1% (P < 0.05) in group I. The median duration of postoperative stay in hospital (7 versus 17 days, P < 0.01) was lower in group I than in group C. The number of postoperative complications per patient (1.4 ± 2.1 versus 3.9 ± 2.8, P < 0.05), as well as the median duration of mechanical ventilation (1 versus 5 days, P < 0.05) and stay in the intensive care unit (3 versus 9 days, P < 0.01) was also lower in group I. Conclusion Monitoring and minimizing ΔPP by volume loading during high-risk surgery improves postoperative outcome and decreases the length of stay in hospital. Trial registration NCT00479011
Resumo:
In the last years of research, I focused my studies on different physiological problems. Together with my supervisors, I developed/improved different mathematical models in order to create valid tools useful for a better understanding of important clinical issues. The aim of all this work is to develop tools for learning and understanding cardiac and cerebrovascular physiology as well as pathology, generating research questions and developing clinical decision support systems useful for intensive care unit patients. I. ICP-model Designed for Medical Education We developed a comprehensive cerebral blood flow and intracranial pressure model to simulate and study the complex interactions in cerebrovascular dynamics caused by multiple simultaneous alterations, including normal and abnormal functional states of auto-regulation of the brain. Individual published equations (derived from prior animal and human studies) were implemented into a comprehensive simulation program. Included in the normal physiological modelling was: intracranial pressure, cerebral blood flow, blood pressure, and carbon dioxide (CO2) partial pressure. We also added external and pathological perturbations, such as head up position and intracranial haemorrhage. The model performed clinically realistically given inputs of published traumatized patients, and cases encountered by clinicians. The pulsatile nature of the output graphics was easy for clinicians to interpret. The manoeuvres simulated include changes of basic physiological inputs (e.g. blood pressure, central venous pressure, CO2 tension, head up position, and respiratory effects on vascular pressures) as well as pathological inputs (e.g. acute intracranial bleeding, and obstruction of cerebrospinal outflow). Based on the results, we believe the model would be useful to teach complex relationships of brain haemodynamics and study clinical research questions such as the optimal head-up position, the effects of intracranial haemorrhage on cerebral haemodynamics, as well as the best CO2 concentration to reach the optimal compromise between intracranial pressure and perfusion. We believe this model would be useful for both beginners and advanced learners. It could be used by practicing clinicians to model individual patients (entering the effects of needed clinical manipulations, and then running the model to test for optimal combinations of therapeutic manoeuvres). II. A Heterogeneous Cerebrovascular Mathematical Model Cerebrovascular pathologies are extremely complex, due to the multitude of factors acting simultaneously on cerebral haemodynamics. In this work, the mathematical model of cerebral haemodynamics and intracranial pressure dynamics, described in the point I, is extended to account for heterogeneity in cerebral blood flow. The model includes the Circle of Willis, six regional districts independently regulated by autoregulation and CO2 reactivity, distal cortical anastomoses, venous circulation, the cerebrospinal fluid circulation, and the intracranial pressure-volume relationship. Results agree with data in the literature and highlight the existence of a monotonic relationship between transient hyperemic response and the autoregulation gain. During unilateral internal carotid artery stenosis, local blood flow regulation is progressively lost in the ipsilateral territory with the presence of a steal phenomenon, while the anterior communicating artery plays the major role to redistribute the available blood flow. Conversely, distal collateral circulation plays a major role during unilateral occlusion of the middle cerebral artery. In conclusion, the model is able to reproduce several different pathological conditions characterized by heterogeneity in cerebrovascular haemodynamics and can not only explain generalized results in terms of physiological mechanisms involved, but also, by individualizing parameters, may represent a valuable tool to help with difficult clinical decisions. III. Effect of Cushing Response on Systemic Arterial Pressure. During cerebral hypoxic conditions, the sympathetic system causes an increase in arterial pressure (Cushing response), creating a link between the cerebral and the systemic circulation. This work investigates the complex relationships among cerebrovascular dynamics, intracranial pressure, Cushing response, and short-term systemic regulation, during plateau waves, by means of an original mathematical model. The model incorporates the pulsating heart, the pulmonary circulation and the systemic circulation, with an accurate description of the cerebral circulation and the intracranial pressure dynamics (same model as in the first paragraph). Various regulatory mechanisms are included: cerebral autoregulation, local blood flow control by oxygen (O2) and/or CO2 changes, sympathetic and vagal regulation of cardiovascular parameters by several reflex mechanisms (chemoreceptors, lung-stretch receptors, baroreceptors). The Cushing response has been described assuming a dramatic increase in sympathetic activity to vessels during a fall in brain O2 delivery. With this assumption, the model is able to simulate the cardiovascular effects experimentally observed when intracranial pressure is artificially elevated and maintained at constant level (arterial pressure increase and bradicardia). According to the model, these effects arise from the interaction between the Cushing response and the baroreflex response (secondary to arterial pressure increase). Then, patients with severe head injury have been simulated by reducing intracranial compliance and cerebrospinal fluid reabsorption. With these changes, oscillations with plateau waves developed. In these conditions, model results indicate that the Cushing response may have both positive effects, reducing the duration of the plateau phase via an increase in cerebral perfusion pressure, and negative effects, increasing the intracranial pressure plateau level, with a risk of greater compression of the cerebral vessels. This model may be of value to assist clinicians in finding the balance between clinical benefits of the Cushing response and its shortcomings. IV. Comprehensive Cardiopulmonary Simulation Model for the Analysis of Hypercapnic Respiratory Failure We developed a new comprehensive cardiopulmonary model that takes into account the mutual interactions between the cardiovascular and the respiratory systems along with their short-term regulatory mechanisms. The model includes the heart, systemic and pulmonary circulations, lung mechanics, gas exchange and transport equations, and cardio-ventilatory control. Results show good agreement with published patient data in case of normoxic and hyperoxic hypercapnia simulations. In particular, simulations predict a moderate increase in mean systemic arterial pressure and heart rate, with almost no change in cardiac output, paralleled by a relevant increase in minute ventilation, tidal volume and respiratory rate. The model can represent a valid tool for clinical practice and medical research, providing an alternative way to experience-based clinical decisions. In conclusion, models are not only capable of summarizing current knowledge, but also identifying missing knowledge. In the former case they can serve as training aids for teaching the operation of complex systems, especially if the model can be used to demonstrate the outcome of experiments. In the latter case they generate experiments to be performed to gather the missing data.
Resumo:
The aim of this PhD thesis was to evaluate the effect of a sub-lethal HPH treatment on some probiotic properties and on cell response mechanisms of already-known functional strains, isolated from Argentinean dairy products. The results achieved showed that HPH treatments, performed at a sub-lethal level of 50 MPa, increased some important functional and technological characteristics of the considered non intestinal probiotic strains. In particular, HPH could modify cell hydrophobicity, autoaggregation and resistance to acid gastric conditions (tested in in vitro model), cell viability and cell production of positive aroma compounds, during a refrigerate storage in a simulated dairy product. In addition, HPH process was able to increase also some probiotic properties exerted in vivo and tested for two of the considered strains. In fact, HPH-treated cells were able to enhance the number of IgA+ cells more than other not treated cells, although this capacity was time dependent. On the other hand, HPH treatment was able to modify some important characteristics that are linked to the cell wall and, consequently, could alter the adhesion capacity in vivo and the interaction with the intestinal cells. These modifications, involving cell outermost structures, were highlighted also by Trasmission Electron Microscopy (TEM) analysis. In fact, the micrographs obtained showed a significant effect of the pressure treatment on the cell morphology and particularly on the cell wall. Moreover, the results achieved showed that composition of plasma membranes and their level of unsaturation are involved in response mechanisms adopted by cells exposed to the sub-lethal HPH treatment. Although the response to the treatment varied according to the characteristics of individual strains, time of storage and suspension media employed, the results of present study, could be exploited to enhance the quality of functional products and to improve their organoleptic properties.
Resumo:
PURPOSE. Portal pressure is measured invasively as Hepatic Venous Pressure Gradient (HVPG) in the angiography room. Liver stiffness measured by Fibroscan was shown to correlate with HVPG values below 12 mmHg. This is not surprising, since in cirrhosis the increase of portal pressure is not directly linked with liver fibrosis and consequently to liver stiffness. We hypothesized that, given the spleen’s privileged location upstream to the whole portal system, splenic stiffness could provide relevant information about portal pressure. Aim of the study was to assess the relationship between liver and spleen stiffness measured by Virtual Touch™ (ARFI) and HVPG in cirrhotic patients. METHODS. 40 consecutive patients (30 males, mean age 62y, mean BMI=26, mean Child-Pugh A6, mean platelet count=92.000/mmc, 19 HCV+, 7 with ascites) underwent to ARFI stiffness measurement (10 valid measurements in right liver lobe both surface and centre, left lobe and 20 in the spleen) and HPVG, blindly to each other. Median ARFI values of 10 samplings on every liver area and of 20 samplings on spleen were calculated. RESULTS. Stiffness could be easily measured in all patients with ARFI, resulting a mean of 2,61±0,76, 2,5±0,62 and 2,55±0,66 m/sec in the liver areas and 3.3±0,5 m/s in the spleen. Median HPVG was 14 mmHg (range 5-27); 28 patients showed values ≥10 mmHg. A positive significant correlation was found between spleen stiffness and HPVG values (r=0.744, p<0.001). No significant correlation was found between all liver stiffness and HVPG (p>0,05). AUROC was calculated to test spleen stiffness ability in discriminating patients with HVPG ≥10. AUROC = 0.911 was obtained, with sensitivity of 69% and specificity of 91% at a cut-off of 3.26 m/s. CONCLUSION. Spleen stiffness measurement with ARFI correlates with HVPG in patients with cirrhosis, with a potential of identifying patients with clinically significant portal hypertension.