993 resultados para POLYSORBATE 80
Resumo:
In astrophysical regimes where the collisional excitation of hydrogen atoms is relevant, the cross-sections for the interactions of hydrogen atoms with electrons and protons are necessary for calculating line profiles and intensities. In particular, at relative velocities exceeding ∼1000 km s−1, collisional excitation by protons dominates over that by electrons. Surprisingly, the H–H+ cross-sections at these velocities do not exist for atomic levels of n≥ 4, forcing researchers to utilize extrapolation via inaccurate scaling laws. In this study, we present a faster and improved algorithm for computing cross-sections for the H–H+ collisional system, including excitation and charge transfer to the n≥ 2 levels of the hydrogen atom. We develop a code named BDSCX which directly solves the Schrödinger equation with variable (but non-adaptive) resolution and utilizes a hybrid spatial-Fourier grid. Our novel hybrid grid reduces the number of grid points needed from ∼4000n6 (for a ‘brute force’, Cartesian grid) to ∼2000n4 and speeds up the computation by a factor of ∼50 for calculations going up to n= 4. We present (l, m)-resolved results for charge transfer and excitation final states for n= 2–4 and for projectile energies of 5–80 keV, as well as fitting functions for the cross-sections. The ability to accurately compute H–H+ cross-sections to n= 4 allows us to calculate the Balmer decrement, the ratio of Hα to Hβ line intensities. We find that the Balmer decrement starts to increase beyond its largely constant value of 2–3 below 10 keV, reaching values of 4–5 at 5 keV, thus complicating its use as a diagnostic of dust extinction when fast (∼1000 km s−1) shocks are impinging upon the ambient interstellar medium.
Resumo:
BACKGROUND Contour augmentation around early-placed implants (Type 2 placement) using autogenous bone chips combined with deproteinized bovine bone mineral (DBBM) and a collagen barrier membrane has been documented to predictably provide esthetically satisfactory clinical outcomes. In addition, recent data from cone beam computed tomography studies have shown the augmented volume to be stable long-term. However, no human histologic data are available to document the tissue reactions to this bone augmentation procedure. METHODS Over an 8-year period, 12 biopsies were harvested 14 to 80 months after implant placement with simultaneous contour augmentation in 10 patients. The biopsies were subjected to histologic and histomorphometric analysis. RESULTS The biopsies consisted of 32.0% ± 9.6% DBBM particles and 40.6% ± 14.6% mature bone. 70.3% ± 14.5% of the DBBM particle surfaces were covered with bone. On the remaining surface, multinucleated giant cells with varying intensity of tartrate-resistant acid phosphatase staining were regularly present. No signs of inflammation were visible, and no tendency toward a decreasing volume fraction of DBBM over time was observed. CONCLUSIONS The present study confirms previous findings that osseointegrated DBBM particles do not tend to undergo substitution over time. This low substitution rate may be the reason behind the clinically and radiographically documented long-term stability of contour augmentation using a combination of autogenous bone chips, DBBM particles, and a collagen membrane.
Resumo:
Noten für einstg. Gesang ohne Begleitung
Resumo:
von Albert Kellermann
Resumo:
We present experimental results on inclusive spectra and mean multiplicities of negatively charged pions produced in inelastic p+p interactions at incident projectile momenta of 20, 31, 40, 80 and 158GeV/c (√s = 6.3, 7.7,8.8, 12.3 and 17.3GeV, respectively). The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN super proton synchrotron. Two-dimensional spectra are determined in terms of rapidity and transverse momentum. Their properties such as the width of rapidity distributions and the inverse slope parameter of transverse mass spectra are extracted and their collision energy dependences are presented. The results on inelastic p+p interactions are compared with the corresponding data on central Pb+Pb collisions measured by the NA49 experiment at the CERNSPS. The results presented in this paper are part of the NA61/SHINE ion program devoted to the study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter. They are required for interpretation of results on nucleus–nucleus and proton–nucleus collisions.
Resumo:
hrsg. vom Komitee zur Erhaltung und Wiederherstellung der Grabdenkmäler auf dem alten israelitischen Friedhofe am Börneplatz zu Frankfurt am Main. Bearb. und ins Deutsche übertr. von Simon Unna
Resumo:
Vorbesitzer: Eljāqīm Carmoly; Abraham Merzbacher
Resumo:
Vorbesitzer: Bartholomaeusstift Frankfurt am Main
Resumo:
The currently presented large dataset (n = 1,422) consists of results that have been assembled over the last 8 years at science fairs using the 16-item odor identification part of the "Sniffin' Sticks". In this context, the focus was on olfactory function in children; in addition before testing, we asked participants to rate their olfactory abilities and the patency of the nasal airways. We reinvestigated some simple questions, e.g., differences in olfactory odor identification abilities in relation to age, sex, self-ratings of olfactory function and nasal patency. Three major results evolved: first, consistent with previously published reports, we found that identification scores of the youngest and the oldest participants were lower than the scores obtained by people aged 20-60. Second, we observed an age-related increase in the olfactory abilities of children. Moreover, the self-assessed olfactory abilities were related to actual performance in the smell test, but only in adults, and self-assessed nasal patency was not related to the "Sniffin' Sticks" identification score.
Resumo:
L. Elias