951 resultados para PFNT1 NUCLEOSIDE TRANSPORTER
Resumo:
The serotonin transporter (SERT) is a member of the Na+/Cl−-dependent neurotransmitter transporter family and constitutes the target of several clinically important antidepressants. Here, replacement of serine-545 in the recombinant rat SERT by alanine was found to alter the cation dependence of serotonin uptake. Substrate transport was now driven as efficiently by LiCl as by NaCl without significant changes in serotonin affinity. Binding of the antidepressant [3H]imipramine occurred with 1/5th the affinity, whereas [3H]citalopram binding was unchanged. These results indicate that serine-545 is a crucial determinant of both the cation dependence of serotonin transport by SERT and the imipramine binding properties of SERT.
Resumo:
Exposure of cells of cyanobacteria (blue–green algae) grown under high-CO2 conditions to inorganic C-limitation induces transcription of particular genes and expression of high-affinity CO2 and HCO3− transport systems. Among the low-CO2-inducible transcription units of Synechococcus sp. strain PCC 7942 is the cmpABCD operon, encoding an ATP-binding cassette transporter similar to the nitrate/nitrite transporter of the same cyanobacterium. A nitrogen-regulated promoter was used to selectively induce expression of the cmpABCD genes by growth of transgenic cells on nitrate under high CO2 conditions. Measurements of the initial rate of HCO3− uptake after onset of light, and of the steady-state rate of HCO3− uptake in the light, showed that the controlled induction of the cmp genes resulted in selective expression of high-affinity HCO3− transport activity. The forced expression of cmpABCD did not significantly increase the CO2 uptake capabilities of the cells. These findings demonstrated that the cmpABCD genes encode a high-affinity HCO3− transporter. A deletion mutant of cmpAB (M42) retained low CO2-inducible activity of HCO3− transport, indicating the occurrence of HCO3− transporter(s) distinct from the one encoded by cmpABCD. HCO3− uptake by low-CO2-induced M42 cells showed lower affinity for external HCO3− than for wild-type cells under the same conditions, showing that the HCO3− transporter encoded by cmpABCD has the highest affinity for HCO3− among the HCO3− transporters present in the cyanobacterium. This appears to be the first unambiguous identification and description of a primary active HCO3− transporter.
Resumo:
Exposure to 3TC of HIV-1 mutant strains containing non-nucleoside reverse transcriptase inhibitor (NNRTI)-specific mutations in their reverse transcriptase (RT) easily selected for double-mutant viruses that had acquired the characteristic 184-Ile mutation in their RT in addition to the NNRTI-specific mutations. Conversely, exposure of 3TC-resistant 184-Val mutant HIV-1 strains to nine different NNRTIs resulted in the rapid emergence of NNRTI-resistant virus strains at a time that was not more delayed than when wild-type HIV-1(IIIB) was exposed to the same compounds. The RTs of these resistant virus strains had acquired the NNRTI-characteristic mutations in addition to the preexisting 184-Val mutation. Surprisingly, when the 184-Ile mutant HIV-1 was exposed to a variety of NNRTIs, the 188-His mutation invariably occurred concomitantly with the 184-Ile mutation in the HIV-1 RT. Breakthrough of this double-mutant virus was markedly accelerated as compared with the mutant virus selected from the wild-type or 184-Val mutant HIV-1 strain. The double (184-Ile + 188-His) mutant virus showed a much more profound resistance profile against the NNRTIs than the 188-His HIV-1 mutant. In contrast with the sequential chemotherapy, concomitant combination treatment of HIV-1-infected cells with 3TC and a variety of NNRTIs resulted in a dramatic delay of virus breakthrough and resistance development.
Resumo:
Behavioral and electrophysiological studies on mutants defective in the Drosophila inebriated (ine) gene demonstrated increased excitability of the motor neuron. In this paper, we describe the cloning and sequence analysis of ine. Mutations in ine were localized on cloned DNA by restriction mapping and restriction fragment length polymorphism (RFLP) mapping of ine mutants. DNA from the ine region was then used to isolate an ine cDNA. In situ hybridization of ine transcripts to developing embryos revealed expression of this gene in several cell types, including the posterior hindgut, Malpighian tubules, anal plate, garland cells, and a subset of cells in the central nervous system. The ine cDNA contains an open reading frame of 658 amino acids with a high degree of sequence similarity to members of the Na+/Cl−-dependent neurotransmitter transporter family. Members of this family catalyze the rapid reuptake of neurotransmitters released into the synapse and thereby play key roles in controlling neuronal function. We conclude that ine mutations cause increased excitability of the Drosophila motor neuron by causing the defective reuptake of the substrate neurotransmitter of the ine transporter and thus overstimulation of the motor neuron by this neurotransmitter. From this observation comes a unique opportunity to perform a genetic dissection of the regulation of excitability of the Drosophila motor neuron.
Resumo:
The inhibition of β-galactosidase expression in a medium containing both glucose and lactose is a typical example of the glucose effect in Escherichia coli. We studied the glucose effect in the lacL8UV5 promoter mutant, which is independent of cAMP and cAMP receptor protein (CRP). A strong inhibition of β-galactosidase expression by glucose and a diauxic growth were observed when the lacL8UV5 cells were grown on a glucose–lactose medium. The addition of isopropyl β-d-thiogalactoside to the culture medium eliminated the glucose effect. Disruption of the crr gene or overproduction of LacY also eliminated the glucose effect. These results are fully consistent with our previous finding that the glucose effect in wild-type cells growing in a glucose–lactose medium is not due to the reduction of CRP–cAMP levels but is due to the inducer exclusion. We found that the glucose effect in the lacL8UV5 cells was no longer observed when either the crp or the cya gene was disrupted. Evidence suggested that CRP–cAMP may not enhance directly the lac repressor action in vivo. Northern blot analysis revealed that the mRNA for ptsG, a major glucose transporter gene, was markedly reduced in a Δcrp or Δcya background. The constitutive expression of the ptsG gene by the introduction of a multicopy plasmid restored the glucose effect in Δcya or Δcrp cells. We conclude that CRP–cAMP plays a crucial role in inducer exclusion, which is responsible for the glucose–lactose diauxie, by activating the expression of the ptsG gene.
Resumo:
Neuronal and glial glutamate transporters remove the excitatory neurotransmitter glutamate from the synaptic cleft. The proteins belong to a large family of secondary transporters, which includes bacterial glutamate transporters. The C-terminal half of the glutamate transporters is well conserved and thought to contain the translocation path and the binding sites for substrate and coupling ions. A serine-rich sequence motif in this part of the proteins is located in a putative intracellular loop. Cysteine-scanning mutagenesis was applied to this loop in the glutamate transporter GltT of Bacillus stearothermophilus. The loop was found to be largely intracellular, but three consecutive positions in the conserved serine-rich motif (S269, S270, and E271) are accessible from both sides of the membrane. Single-cysteine mutants in the serine-rich motif were still capable of glutamate transport, but modification with N-ethylmaleimide blocked the transport activity in six mutants (T267C, A268C, S269C, S270C, E271C, and T272C). Two milimolars l-glutamate effectively protected against the modification of the cysteines at position 269–271 from the periplasmic side of the membrane but was unable to protect cysteine modification from the cytoplasmic side of the membrane. The results indicate that the conserved serine-rich motif in the glutamate transporter forms a reentrant loop, a structure that is found in several ion channels but is unusual for transporter proteins. The reentrant loop is of crucial importance for the function of the glutamate transporter.
Resumo:
In an attempt to define the mechanism of insulin-regulated glucose transporter 4 (Glut4) translocation, we have developed an in vitro reconstitution assay. Donor membranes from 3T3-L1 adipocytes transfected with mycGlut4 were incubated with plasma membrane (PM) from nontransfected 3T3-L1 cells, and the association was assessed by using two types of centrifugation assays. Association of mycGlut4 vesicles derived from donor membranes with the PM was concentration-, temperature-, time-, and Ca2+-dependent but ATP-independent. Addition of a syntaxin 4 fusion protein produced a biphasic response, increasing association at low concentration and inhibiting association at higher concentrations. PM from insulin-stimulated cells showed an enhanced association as compared with those from untreated cells. Use of donor membranes from insulin-stimulated cells further enhanced the association and also enhanced association to the PM from isolated rat adipocytes. Addition of cytosol, GTP, or guanosine 5′-[γ-thio]triphosphate decreased the association. In summary, insulin-induced Glut4 translocation can be reconstituted in vitro to a limited extent by using isolated membranes. This association appears to involve protein–protein interactions among the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex proteins. Finally, the ability of insulin to enhance association depends on insulin-induced changes in the PM and, to a lesser extent, in the donor membranes.
Resumo:
Polymorphic regions consisting of a variable number of tandem repeats within intron 2 of the gene coding for the serotonin transporter protein 5-HTT have been associated with susceptibility to affective disorders. We have cloned two of these intronic polymorphisms, Stin2.10 and Stin2.12, into an expression vector containing a heterologous minimal promoter and the bacterial LacZ reporter gene. These constructs were then used to produce transgenic mice. In embryonic day 10.5 embryos, both Stin2.10 and Stin2.12 produced consistent β-galactosidase expression in the embryonic midbrain, hindbrain, and spinal cord floor plate. However, we observed that the levels of β-galactosidase expression produced by both the Stin2.10 and Stin2.12 within the rostral hindbrain differed significantly at embryonic day 10.5. Our data suggest that these polymorphic variable number of tandem repeats regions act as transcriptional regulators and have allele-dependent differential enhancer-like properties within an area of the hindbrain where the 5-HTT gene is known to be transcribed at this stage of development.
Resumo:
Zinc transporter-3 (ZnT-3), a member of a growing family of mammalian zinc transporters, is expressed in regions of the brain that are rich in histochemically reactive zinc (as revealed by the Timm’s stain), including entorhinal cortex, amygdala, and hippocampus. ZnT-3 protein is most abundant in the zinc-enriched mossy fibers that project from the dentate granule cells to hilar and CA3 pyramidal neurons. We show here by electron microscopy that ZnT-3 decorates the membranes of all clear, small, round synaptic vesicles (SVs) in the mossy fiber boutons of both mouse and monkey. Furthermore, up to 60–80% of these SVs contain Timm’s-stainable zinc. The coincidence of ZnT-3 on the membranes of SVs that accumulate zinc, and its homology with known zinc transporters, suggest that ZnT-3 is responsible for the transport of zinc into SVs, and hence for the ability of these neurons to release zinc upon excitation.
Resumo:
Glutamate transporters in the central nervous system are expressed in both neurons and glia, they mediate high affinity, electrogenic uptake of glutamate, and they are associated with an anion conductance that is stoichiometrically uncoupled from glutamate flux. Although a complete cycle of transport may require 50–100 ms, previous studies suggest that transporters can alter synaptic currents on a much faster time scale. We find that application of l-glutamate to outside-out patches from cerebellar Bergmann glia activates anion-potentiated glutamate transporter currents that activate in <1 ms, suggesting an efficient mechanism for the capture of extrasynaptic glutamate. Stimulation in the granule cell layer in cerebellar slices elicits all or none α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor and glutamate transporter currents in Bergmann glia that have a rapid onset, suggesting that glutamate released from climbing fiber terminals escapes synaptic clefts and reaches glial membranes shortly after release. Comparison of the concentration dependence of both α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor and glutamate transporter kinetics in patches with the time course of climbing fiber-evoked responses indicates that the glutamate transient at Bergmann glial membranes reaches a lower concentration than attained in the synaptic cleft and remains elevated in the extrasynaptic space for many milliseconds.
Resumo:
The split-ubiquitin technique was used to detect transient protein interactions in living cells. Nub, the N-terminal half of ubiquitin (Ub), was fused to Sec62p, a component of the protein translocation machinery in the endoplasmic reticulum of Saccharomyces cerevisiae. Cub, the C-terminal half of Ub, was fused to the C terminus of a signal sequence. The reconstitution of a quasi-native Ub structure from the two halves of Ub, and the resulting cleavage by Ub-specific proteases at the C terminus of Cub, serve as a gauge of proximity between the two test proteins linked to Nub and Cub. Using this assay, we show that Sec62p is spatially close to the signal sequence of the prepro-α-factor in vivo. This proximity is confined to the nascent polypeptide chain immediately following the signal sequence. In addition, the extent of proximity depends on the nature of the signal sequence. Cub fusions that bore the signal sequence of invertase resulted in a much lower Ub reconstitution with Nub-Sec62p than otherwise identical test proteins bearing the signal sequence of prepro-α-factor. An inactive derivative of Sec62p failed to interact with signal sequences in this assay. These in vivo findings are consistent with Sec62p being part of a signal sequence-binding complex.
Resumo:
Subcellular targeting and the activity of facilitative glucose transporters are likely to be regulated by interactions with cellular proteins. This report describes the identification and characterization of a protein, GLUT1 C-terminal binding protein (GLUT1CBP), that binds via a PDZ domain to the C terminus of GLUT1. The interaction requires the C-terminal four amino acids of GLUT1 and is isoform specific because GLUT1CBP does not interact with the C terminus of GLUT3 or GLUT4. Most rat tissues examined contain both GLUT1CBP and GLUT1 mRNA, whereas only small intestine lacked detectable GLUT1CBP protein. GLUT1CBP is also expressed in primary cultures of neurons and astrocytes, as well as in Chinese hamster ovary, 3T3-L1, Madin–Darby canine kidney, Caco-2, and pheochromocytoma-12 cell lines. GLUT1CBP is able to bind to native GLUT1 extracted from cell membranes, self-associate, or interact with the cytoskeletal proteins myosin VI, α-actinin-1, and the kinesin superfamily protein KIF-1B. The presence of a PDZ domain places GLUT1CBP among a growing family of structural and regulatory proteins, many of which are localized to areas of membrane specialization. This and its ability to interact with GLUT1 and cytoskeletal proteins implicate GLUT1CBP in cellular mechanisms for targeting GLUT1 to specific subcellular sites either by tethering the transporter to cytoskeletal motor proteins or by anchoring the transporter to the actin cytoskeleton.
Resumo:
Overexpression of the yeast Pdr5 ATP-binding cassette transporter leads to pleiotropic drug resistance to a variety of structurally unrelated cytotoxic compounds. To identify Pdr5 residues involved in substrate recognition and/or drug transport, we used a combination of random in vitro mutagenesis and phenotypic screening to isolate novel mutant Pdr5 transporters with altered substrate specificity. A plasmid library containing randomly mutagenized PDR5 genes was transformed into appropriate drug-sensitive yeast cells followed by phenotypic selection of Pdr5 mutants. Selected mutant Pdr5 transporters were analyzed with respect to their expression levels, subcellular localization, drug resistance profiles to cycloheximide, rhodamines, antifungal azoles, steroids, and sensitivity to the inhibitor FK506. DNA sequencing of six PDR5 mutant genes identified amino acids important for substrate recognition, drug transport, and specific inhibition of the Pdr5 transporter. Mutations were found in each nucleotide-binding domain, the transmembrane domain 10, and, most surprisingly, even in predicted extracellular hydrophilic loops. At least some point mutations identified appear to influence folding of Pdr5, suggesting that the folded structure is a major substrate specificity determinant. Surprisingly, a S1360F exchange in transmembrane domain 10 not only caused limited substrate specificity, but also abolished Pdr5 susceptibility to inhibition by the immunosuppressant FK506. This is the first report of a mutation in a yeast ATP-binding cassette transporter that allows for the functional separation of substrate transport and inhibitor susceptibility.
Resumo:
Insulin and guanosine-5′-O-(3-thiotriphosphate) (GTPγS) both stimulate glucose transport and translocation of the insulin-responsive glucose transporter 4 (GLUT4) to the plasma membrane in adipocytes. Previous studies suggest that these effects may be mediated by different mechanisms. In this study we have tested the hypothesis that these agonists recruit GLUT4 by distinct trafficking mechanisms, possibly involving mobilization of distinct intracellular compartments. We show that ablation of the endosomal system using transferrin-HRP causes a modest inhibition (∼30%) of insulin-stimulated GLUT4 translocation. In contrast, the GTPγS response was significantly attenuated (∼85%) under the same conditions. Introduction of a GST fusion protein encompassing the cytosolic tail of the v-SNARE cellubrevin inhibited GTPγS-stimulated GLUT4 translocation by ∼40% but had no effect on the insulin response. Conversely, a fusion protein encompassing the cytosolic tail of vesicle-associated membrane protein-2 had no significant effect on GTPγS-stimulated GLUT4 translocation but inhibited the insulin response by ∼40%. GTPγS- and insulin-stimulated GLUT1 translocation were both partially inhibited by GST-cellubrevin (∼50%) but not by GST-vesicle-associated membrane protein-2. Incubation of streptolysin O-permeabilized 3T3-L1 adipocytes with GTPγS caused a marked accumulation of Rab4 and Rab5 at the cell surface, whereas other Rab proteins (Rab7 and Rab11) were unaffected. These data are consistent with the localization of GLUT4 to two distinct intracellular compartments from which it can move to the cell surface independently using distinct sets of trafficking molecules.
Resumo:
Mutations of the glycoprotein rBAT cause cystinuria type I, an autosomal recessive failure of dibasic amino acid transport (b0,+ type) across luminal membranes of intestine and kidney cells. Here we identify the permease-like protein b0,+AT as the catalytic subunit that associates by a disulfide bond with rBAT to form a hetero-oligomeric b0,+ amino acid transporter complex. We demonstrate its b0,+-type amino acid transport kinetics using a heterodimeric fusion construct and show its luminal brush border localization in kidney proximal tubule. These biochemical, transport, and localization characteristics as well as the chromosomal localization on 19q support the notion that the b0,+AT protein is the product of the gene defective in non-type I cystinuria.