968 resultados para PET module DOI calibration
Resumo:
High-resolution, well-calibrated records of lake sediments are critically important for quantitative climate reconstructions, but they remain a methodological and analytical challenge. While several comprehensive paleotemperature reconstructions have been developed across Europe, only a few quantitative high-resolution studies exist for precipitation. Here we present a calibration and verification study of lithoclastic sediment proxies from proglacial Lake Oeschinen (46°30′N, 7°44′E, 1,580 m a.s.l., north–west Swiss Alps) that are sensitive to rainfall for the period AD 1901–2008. We collected two sediment cores, one in 2007 and another in 2011. The sediments are characterized by two facies: (A) mm-laminated clastic varves and (B) turbidites. The annual character of the laminae couplets was confirmed by radiometric dating (210Pb, 137Cs) and independent flood-layer chronomarkers. Individual varves consist of a dark sand-size spring-summer layer enriched in siliciclastic minerals and a lighter clay-size calcite-rich winter layer. Three subtypes of varves are distinguished: Type I with a 1–1.5 mm fining upward sequence; Type II with a distinct fine-sand base up to 3 mm thick; and Type III containing multiple internal microlaminae caused by individual summer rainstorm deposits. Delta-fan surface samples and sediment trap data fingerprint different sediment source areas and transport processes from the watershed and confirm the instant response of sediment flux to rainfall and erosion. Based on a highly accurate, precise and reproducible chronology, we demonstrate that sediment accumulation (varve thickness) is a quantitative predictor for cumulative boreal alpine spring (May–June) and spring/summer (May–August) rainfall (rMJ = 0.71, rMJJA = 0.60, p < 0.01). Bootstrap-based verification of the calibration model reveals a root mean squared error of prediction (RMSEPMJ = 32.7 mm, RMSEPMJJA = 57.8 mm) which is on the order of 10–13 % of mean MJ and MJJA cumulative precipitation, respectively. These results highlight the potential of the Lake Oeschinen sediments for high-resolution reconstructions of past rainfall conditions in the northern Swiss Alps, central and eastern France and south-west Germany.
Resumo:
Somatostatin receptor PET tracers such as [68Ga-DOTA,1-Nal3]-octreotide (68Ga-DOTANOC) and [68Ga-DOTA,Tyr3]-octreotate (68Ga-DOTATATE) have shown promising results in patients with neuroendocrine tumors, with a higher lesion detection rate than is achieved with 18F-fluorodihydroxyphenyl-l-alanine PET, somatostatin receptor SPECT, CT, or MR imaging. 68Ga-DOTANOC has high affinity for somatostatin receptor subtypes 2, 3, and 5 (sst2,3,5). It has a wider receptor binding profile than 68Ga-DOTATATE, which is sst2-selective. The wider receptor binding profile might be advantageous for imaging because neuroendocrine tumors express different subtypes of somatostatin receptors. The goal of this study was to prospectively compare 68Ga-DOTANOC and 68Ga-DOTATATE PET/CT in the same patients with gastroenteropancreatic neuroendocrine tumors (GEP-NETs) and to evaluate the clinical impact of 68Ga-DOTANOC PET/CT. Methods: Eighteen patients with biopsy-proven GEP-NETs were evaluated with 68Ga-DOTANOC and 68Ga-DOTATATE using a randomized crossover design. Labeling of DOTANOC and DOTATATE with 68Ga was standardized using a fully automated synthesis device. PET/CT findings were compared with 3-phase CT scans and in some patients with MR imaging, 18F-FDG PET/CT, and histology. Uptake in organs and tumor lesions was quantified and compared by calculation of maximum standardized uptake values (SUVmax) using volume computer-assisted reading. Results: Histology revealed low-grade GEP-NETs (G1) in 4 patients, intermediate grade (G2) in 7, and high grade (G3) in 7. 68Ga-DOTANOC and 68Ga-DOTATATE were false-negative in only 1 of 18 patients. In total, 248 lesions were confirmed by cross-sectional and PET imaging. The lesion-based sensitivity of 68Ga-DOTANOC PET was 93.5%, compared with 85.5% for 68Ga-DOTATATE PET (P = 0.005). The better performance of 68Ga-DOTANOC PET is attributed mainly to the significantly higher detection rate of liver metastases rather than tumor differentiation grade. Multivariate analysis revealed significantly higher SUVmax in G1 tumors than in G3 tumors (P = 0.009). This finding was less pronounced with 68Ga-DOTANOC (P > 0.001). Altogether, 68Ga-DOTANOC changed treatment in 3 of 18 patients (17%). Conclusion: The sst2,3,5-specific radiotracer 68Ga-DOTANOC detected significantly more lesions than the sst2-specific radiotracer 68Ga-DOTATATE in our patients with GEP-NETs. The clinical relevance of this finding has to be proven in larger studies.
Resumo:
Water-conducting faults and fractures were studied in the granite-hosted A¨ spo¨ Hard Rock Laboratory (SE Sweden). On a scale of decametres and larger, steeply dipping faults dominate and contain a variety of different fault rocks (mylonites, cataclasites, fault gouges). On a smaller scale, somewhat less regular fracture patterns were found. Conceptual models of the fault and fracture geometries and of the properties of rock types adjacent to fractures were derived and used as input for the modelling of in situ dipole tracer tests that were conducted in the framework of the Tracer Retention Understanding Experiment (TRUE-1) on a scale of metres. After the identification of all relevant transport and retardation processes, blind predictions of the breakthroughs of conservative to moderately sorbing tracers were calculated and then compared with the experimental data. This paper provides the geological basis and model calibration, while the predictive and inverse modelling work is the topic of the companion paper [J. Contam. Hydrol. 61 (2003) 175]. The TRUE-1 experimental volume is highly fractured and contains the same types of fault rocks and alterations as on the decametric scale. The experimental flow field was modelled on the basis of a 2D-streamtube formalism with an underlying homogeneous and isotropic transmissivity field. Tracer transport was modelled using the dual porosity medium approach, which is linked to the flow model by the flow porosity. Given the substantial pumping rates in the extraction borehole, the transport domain has a maximum width of a few centimetres only. It is concluded that both the uncertainty with regard to the length of individual fractures and the detailed geometry of the network along the flowpath between injection and extraction boreholes are not critical because flow is largely one-dimensional, whether through a single fracture or a network. Process identification and model calibration were based on a single uranine breakthrough (test PDT3), which clearly showed that matrix diffusion had to be included in the model even over the short experimental time scales, evidenced by a characteristic shape of the trailing edge of the breakthrough curve. Using the geological information and therefore considering limited matrix diffusion into a thin fault gouge horizon resulted in a good fit to the experiment. On the other hand, fresh granite was found not to interact noticeably with the tracers over the time scales of the experiments. While fracture-filling gouge materials are very efficient in retarding tracers over short periods of time (hours–days), their volume is very small and, with time progressing, retardation will be dominated by altered wall rock and, finally, by fresh granite. In such rocks, both porosity (and therefore the effective diffusion coefficient) and sorption Kds are more than one order of magnitude smaller compared to fault gouge, thus indicating that long-term retardation is expected to occur but to be less pronounced.
Resumo:
PURPOSE Abundant expression of somatostatin receptors (sst) is a characteristic of neuroendocrine tumors (NET). Thus, radiolabeled somatostatin analogs have emerged as important tools for both in vivo diagnosis and therapy of NET. The two compounds most often used in functional imaging with positron emission tomography (PET) are (68)Ga-DOTATATE and (68)Ga-DOTATOC. Both analogs share a quite similar sst binding profile. However, the in vitro affinity of (68)Ga-DOTATATE in binding the sst subtype 2 (sst2) is approximately tenfold higher than that of (68)Ga-DOTATOC. This difference may affect their efficiency in detection of NET lesions, as sst2 is the predominant receptor subtype on gastroenteropancreatic NET. We thus compared the diagnostic value of PET/CT with both radiolabeled somatostatin analogs ((68)Ga-DOTATATE and (68)Ga-DOTATOC) in the same patients with gastroenteropancreatic NET. PATIENTS AND METHODS Twenty-seven patients with metastatic gastroenteropancreatic NET underwent (68)Ga-DOTATOC and (68)Ga-DOTATATE PET/CT as part of the workup before prospective peptide receptor radionuclide therapy (PRRT). The performance of both imaging methods was analyzed and compared for detection of individual lesions per patient and for eight defined body regions. A region was regarded as positive if at least one lesion was detected in that region. In addition, radiopeptide uptake in terms of the maximal standardized uptake value (SUV(max)) was compared for concordant lesions and renal parenchyma. RESULTS Fifty-one regions were found positive with both (68)Ga-DOTATATE and (68)Ga-DOTATOC. Overall, however, significantly fewer lesions were detected with (68)Ga-DOTATATE in comparison with (68)Ga-DOTATOC (174 versus 179, p < 0.05). Mean (68)Ga-DOTATATE SUV(max) across all lesions was significantly lower compared with (68)Ga-DOTATOC (16.9 ± 6.8 versus 22.1 ± 12.0, p < 0.01). Mean SUV(max) for renal parenchyma was not significantly different between (68)Ga-DOTATATE and (68)Ga-DOTATOC (12.6 ± 2.6 versus 12.6 ± 2.7). CONCLUSIONS (68)Ga-DOTATOC and (68)Ga-DOTATATE possess similar diagnostic accuracy for detection of gastroenteropancreatic NET lesions (with a potential advantage of (68)Ga-DOTATOC) despite their evident difference in affinity for sst2. Quite unexpectedly, maximal uptake of (68)Ga-DOTATOC tended to be higher than its (68)Ga-DOTATATE counterpart. However, tumor uptake shows high inter- and intraindividual variance with unpredictable preference of one radiopeptide. Thus, our data encourage the application of different sst ligands to enable personalized imaging and therapy of gastroenteropancreatic NET with optimal targeting of tumor receptors.
Resumo:
coefplot plots results from estimation commands or Stata matrices. Results from multiple models or matrices can be combined in a single graph. The default behavior of coefplot is to draw markers for coefficients and horizontal spikes for confidence intervals. However, coefplot can also produce various other types of graphs.
Resumo:
We measured the concentrations and isotopic compositions of He, Ne, and Ar in bulk samples and metal separates of 14 ordinary chondrite falls with long exposure ages and high metamorphic grades. In addition, we measured concentrations of the cosmogenic radionuclides 10Be, 26Al, and 36Cl in metal separates and in the nonmagnetic fractions of the selected meteorites. Using cosmogenic 36Cl and 36Ar measured in the metal separates, we determined 36Cl-36Ar cosmic-ray exposure (CRE) ages, which are shielding-independent and therefore particularly reliable. Using the cosmogenic noble gases and radionuclides, we are able to decipher the CRE history for the studied objects. Based on the correlation 3He/21Ne versus 22Ne/21Ne, we demonstrate that, among the meteorites studied, only one suffered significant diffusive losses (about 35%). The data confirm that the linear correlation 3He/21Ne versus 22Ne/21Ne breaks down at high shielding. Using 36Cl-36Ar exposure ages and measured noble gas concentrations, we determine 21Ne and 38Ar production rates as a function of 22Ne/21Ne. The new data agree with recent model calculations for the relationship between 21Ne and 38Ar production rates and the 22Ne/21Ne ratio, which does not always provide unique shielding information. Based on the model calculations, we determine a new correlation line for 21Ne and 38Ar production rates as a function of the shielding indicator 22Ne/21Ne for H, L, and LL chondrites with preatmospheric radii less than about 65 cm. We also calculated the 10Be/21Ne and 26Al/21Ne production rate ratios for the investigated samples, which show good agreement with recent model calculations.
Resumo:
The reliability of millimeter and sub-millimeter wave radiometer measurements is dependent on the accuracy of the loads they employ as calibration targets. In the recent past on-board calibration loads have been developed for a variety of satellite remote sensing instruments. Unfortunately some of these have suffered from calibration inaccuracies which had poor thermal performance of the calibration target as the root cause. Stringent performance parameters of the calibration target such as low reflectivity, high temperature uniformity, low mass and low power consumption combined with low volumetric requirements remain a challenge for the space instrument developer. In this paper we present a novel multi-layer absorber concept for a calibration load which offers an excellent compromise between very good radiometric performance and temperature uniformity and the mass and volumetric constraints required by space-borne calibration targets.
Resumo:
The new Bern cyclotron laboratory aims at industrial radioisotope production for PET diagnostics and multidisciplinary research by means of a specifically conceived beam transfer line, terminated in a separate bunker. In this framework, an innovative beam monitor detector based on doped silica and optical fibres has been designed, constructed, and tested. Scintillation light produced by Ce and Sb doped silica fibres moving across the beam is measured, giving information on beam position, shape, and intensity. The doped fibres are coupled to commercial optical fibres, allowing the read-out of the signal far away from the radiation source. This general-purpose device can be easily adapted for any accelerator used in medical applications and is suitable either for low currents used in hadrontherapy or for currents up to a few μA for radioisotope production, as well as for both pulsed and continuous beams.
Resumo:
X-ray imaging is one of the most commonly used medical imaging modality. Albeit X-ray radiographs provide important clinical information for diagnosis, planning and post-operative follow-up, the challenging interpretation due to its 2D projection characteristics and the unknown magnification factor constrain the full benefit of X-ray imaging. In order to overcome these drawbacks, we proposed here an easy-to-use X-ray calibration object and developed an optimization method to robustly find correspondences between the 3D fiducials of the calibration object and their 2D projections. In this work we present all the details of this outlined concept. Moreover, we demonstrate the potential of using such a method to precisely extract information from calibrated X-ray radiographs for two different orthopedic applications: post-operative acetabular cup implant orientation measurement and 3D vertebral body displacement measurement during preoperative traction tests. In the first application, we have achieved a clinically acceptable accuracy of below 1° for both anteversion and inclination angles, where in the second application an average displacement of 8.06±3.71 mm was measured. The results of both applications indicate the importance of using X-ray calibration in the clinical routine.
Resumo:
We propose notions of calibration for probabilistic forecasts of general multivariate quantities. Probabilistic copula calibration is a natural analogue of probabilistic calibration in the univariate setting. It can be assessed empirically by checking for the uniformity of the copula probability integral transform (CopPIT), which is invariant under coordinate permutations and coordinatewise strictly monotone transformations of the predictive distribution and the outcome. The CopPIT histogram can be interpreted as a generalization and variant of the multivariate rank histogram, which has been used to check the calibration of ensemble forecasts. Climatological copula calibration is an analogue of marginal calibration in the univariate setting. Methods and tools are illustrated in a simulation study and applied to compare raw numerical model and statistically postprocessed ensemble forecasts of bivariate wind vectors.
Resumo:
Low-frequency "off-line" repetitive transcranial magnetic stimulation (rTMS) over the course of several minutes has attained considerable attention as a research tool in cognitive neuroscience due to its ability to induce functional disruptions of brain areas. This disruptive rTMS effect is highly valuable for revealing a causal relationship between brain and behavior. However, its influence on remote interconnected areas and, more importantly, the duration of the induced neurophysiological effects, remain unknown. These aspects are critical for a study design in the context of cognitive neuroscience. In order to investigate these issues, 12 healthy male subjects underwent 8 H(2)(15)O positron emission tomography (PET) scans after application of long-train low-frequency rTMS to the right dorsolateral prefrontal cortex (DLPFC). Immediately after the stimulation train, regional cerebral blood flow (rCBF) increases were present under the stimulation site as well as in other prefrontal cortical areas, including the ventrolateral prefrontal cortex (VLPFC) ipsilateral to the stimulation site. The mean increases in rCBF returned to baseline within 9 min. The duration of this unilateral prefrontal rTMS effect on rCBF is of particular interest to those who aim to influence behavior in cognitive paradigms that use an "off-line" approach.