930 resultados para Overland journeys to the Pacific
Resumo:
Collections made with 150 l sampling bottles and BR 113/140 nets, as well as direct counts from the Mir submersible are used to analyze vertical distribution of total biomass of meso- and macroplankton and biomass distributions of their main component groups in the central oligotrophic regions of the North Pacific. Biomass of mesoplankton in the upper 200 m layer ranges from 3.1 to 8.6 g/m**2, but sometimes it increases up to as much as 98 g/m**2 in local population explosions of salps. Jellies predominate in macroplankton at depths of up to 2-3 km, contributing 97-98% of live weight and 30-70% of biomass as organic carbon. In importance they are followed by micronecton fishes (up to 40% of organic carbon). Contributions of other groups countable from the submersible were negligible. Distributions of species at particular stations are discussed.
Resumo:
We report new 187Os/186Os data and Re and Os concentrations in metalliferous sediments from the Pacific to construct a composite Os isotope seawater evolution curve over the past 80 m.y. Analyses of four samples of upper Cretaceous age yield 187Os/186Os values of between 3 and 6.5 and 187Re/186Os values below 55. Mass balance calculations indicate that the pronounced minimum of about 2 in the Os isotope ratio of seawater at the K-T boundary probably reflects the enormous input of cosmogenic material into the oceans by the K-T impactor(s). Following a rapid recovery to 187Os/186Os of 3.5 at 63 Ma, data for the early and middle part of the Cenozoic show an increase in 187Os/186Os to about 6 at 15 Ma. Variations in the isotopic composition of leachable Os from slowly accumulating metalliferous sediments show large fluctuations over short time spans. In contrast, analyses of rapidly accumulating metalliferous carbonates do not exhibit the large oscillations observed in the pelagic clay leach data. These results together with sediment leaching experiments indicate that dissolution of non-hydrogenous Os can occur during the hydrogen peroxide leach and demonstrate that Os data from pelagic clay leachates do not always reflect the Os isotopic composition of seawater. New data for the late Cenozoic further substantiate the rapid increase in the 187Os/186Os of seawater during the past 15 Ma. We interpret the correlation between the marine Sr and Os isotope records during this time period as evidence that weathering within the drainage basin of the Ganges-Brahmaputra river system is responsible for driving seawater Sr and Os toward more radiogenic isotopic compositions. The positive correlation between 87Sr/86Sr and U concentration, the covariation of U and Re concentrations, and the high dissolved Re, U and Sr concentrations found in the Ganges-Brahmaputra river waters supports this interpretation. Accelerating uplift of many orogens worldwide over the past 15 Ma, especially during the last 5 Ma, could have contributed to the rapid increase in 187Os/186Os from 6 to 8.5 over the past 15 Ma. Prior to 15 Ma the marine Sr and Os record are not tightly coupled. The heterogeneous distribution of different lithologies within eroding terrains may play an important role in decoupling the supplies of radiogenic Os and Sr to the oceans and account for the periods of decoupling of the marine Sr and Os isotope records.
Resumo:
Phosphorus content in the surface layer of bottom sediments varies from 0.07% to 0.73%. Clayey radiolarian and radiolarian clayey oozes contain 0.12% P, miopelagic clays 0.21% P, and sediments with high iron and manganese concentrations 0.46% P (average contents). Phosphorus content of iron-manganese nodules varies from 0.14% to 0.39%, average 0.19%. Correlation between phosphorus contents in nodules and surrounding sediments is indicated indirectly by P/Fe ratio. Phosphorus is non-uniformly distributed in some nodules and sometimes correlates with iron. Accumulation of phosphorus in iron-manganese nodules is governed by a degree of manganese predominance in ore components.
Resumo:
Dust deposition in the Southern Ocean constitutes a critical modulator of past global climate variability, but how it has varied temporally and geographically is underdetermined. Here, we present data sets of glacial-interglacial dust-supply cycles from the largest Southern Ocean sector, the polar South Pacific, indicating three times higher dust deposition during glacial periods than during interglacials for the past million years. Although the most likely dust source for the South Pacific is Australia and New Zealand, the glacial-interglacial pattern and timing of lithogenic sediment deposition is similar to dust records from Antarctica and the South Atlantic dominated by Patagonian sources. These similarities imply large-scale common climate forcings such as latitudinal shifts of the southern westerlies and regionally enhanced glaciogenic dust mobilization in New Zealand and Patagonia.
Resumo:
Detailed palynological studies in the northeast (NE) Pacific, Strait of Georgia (BC, Canada), southeast (SE) Pacific and northwest Pacific (Dongdo Bay, South Korea) resulted in the recognition of the new dinoflagellate cyst species Selenopemphix undulata sp. nov. This species is restricted to cool temperate to sub-polar climate zones, where it is found in highest relative abundances in highly productive non- to reduced upwelling regions with an annual mean sea-surface temperature (aSST) below 16 °C and an annual mean sea-surface salinity (aSSS) between 20 and 35 psu. Those observations are in agreement with the late Quaternary fossil records from Santa Barbara Basin (ODP 893; 34°N) and offshore Chile (ODP 1233; 41°S), where this species thrived during the last glacial. This period was characterised by high nutrient availability and the absence of species favouring upwelling conditions. The indirect dependence of S. undulata sp. nov. abundances on nutrient availability during reduced or non-upwelling periods is expressed by the synchronous fluctuations with diatom abundances, since the distribution and growth rates of the latter are directly related with the availability of macronutrients in the surface waters.
Resumo:
Typomorphic features of the main morphogenetic types of Fe-Mn nodules from the radiolarian belt have been considered on materials from polygons in the Clarion-Clipperton ore province and in the Central Basin of the Pacific Ocean. By character of surfaces, features of internal structure, mineral and chemical compositions, behavior of trace elements at selective leaching three genetic types of nodules have been divided: predominantly sedimentary, diagenetic, and sedimentary diagenetic. Their formation results from mechanism of growth.
Resumo:
In this study we present a late Miocene - early Pliocene record of sixty-four zones with prominent losses in the magnetic susceptibility signal, taken on a sediment drift (ODP Site 1095) on the Pacific continental rise of the West Antarctic Peninsula. The zones are comparable in shape and magnitude and occur commonly at glacial-to-interglacial transitions. High resolution records of organic matter, magnetic susceptibility and clay mineral composition from early Pliocene intervals demonstrate that neither dilution effects nor provenance changes of the sediments have caused the magnetic susceptibility losses. Instead, reductive dissolution of magnetite under suboxic conditions seems to be the most likely explanation. We propose that during the deglaciation exceptionally high organic fluxes in combination with weak bottom water currents and prominent sediment draping diatom ooze layers produced temporary suboxic conditions in the uppermost sediments. It is remarkable that synsedimentary suboxic conditions can be observed in one of the best ventilated open ocean regions of the World.
Resumo:
Nutrition of 6 deep-sea ophiuroid species of the genus Amphiophiura in the Pacific and Indian Oceans has been studied. One species is a detritus-feeder while the others are carnivorous. All 6 are widespread in deep-sea eutrophic regions of both oceans. Carnivorous species are also necrophagous, feeding on dead fish, surface pteropods, and crustaceans. Fishes are consumed mainly in the Indian Ocean, pteropods in the Pacific. Thus, as shown by carnivorous Amphtophiura, the rain of dead surface pelagic organisms is one of the most important sources of food for a number of deep-sea bottom-dwelling invertebrates.
Resumo:
Distribution of K-Ar age marks in Pacific bottom sediments is shown on the base of large analytical material. Dependence of K-Ar age marks on abundance of potassium-bearing authigenic diagenetic minerals (glauconite, phillipsite) widely spread in the studied part of the World Oceans.
Resumo:
Devoted to chemical interaction between the ocean and the atmosphere in the Pacific and Indian Oceans measured in 1955-1960.
Resumo:
The amount of lead annually transferred from oceanic crust to metalliferous sediments was estimated in order to test the hypothesis that a non-magmatic flux of lead causes the Pb surplus in the continental crust. A Pb surplus has been inferred from global crust-mantle lead mass balances derived from lead concentration correlations with other trace elements and from lead isotope systematics in oceanic basalts. DSDP/ODP data on the amount of metalliferous sediments in the Pacific Ocean and along a South Atlantic traverse are used to calculate the mean worldwide thickness of 3 (+/-1) m for purely metalliferous sediment componens. Lead isotope ratios of 39 metalliferous sediments from the Pacific define mixing lines between continent-derived (seawater) and mantle-derived (basaltic) lead, with the most metal-rich sediments usually having the most mantle-like Pb isotope composition. We used this isotope correlation and the Pb content of the 39 metalliferous sediments to derive an estimate of 130 (+/-70) µg/g for the concentration of mantle-derived lead in the purely metalliferous end-member. Mass balance calculations show that at least 12 (+/-8)% of the lead, annually transferred from upper mantle to oceanic crust at the ocean ridges, is leached out by hydrothermal processes and re-deposited in marine sediments. If all of the metalliferous lead is ultimately transferred to the continental crust during subduction, the annual flux of this lead from mantle to continental crust is 2.6 (+/-2.0) * 10**6 kg. Assuming this transfer rate to be proportional to the rate of oceanic plate production, one can fit the lead transfer to models of plate production rate variations through time. Integrating over 4 Ga, hydrothermal lead transfer to the continental crust accounts for a significant portion of the Pb surplus in the continental crust. It therefore appears to be one of the main reasons for the anomalous behavior of lead in the global crust-mantle system.
Resumo:
Mineral and chemical alterations of basalts were studied in the upper part of the ocean crust using data of deep-sea drilling from D/S Glomar Challenger in the main structures of the Pacific floor. Extraction of majority of chemical elements (including heavy metals) from basalts results mainly from their interaction with heated sea water. As a result mineralized hydrothermal solutions are formed. On entering the ocean they influence greatly on ocean sedimentation and ore formation.
Resumo:
The monograph highlights extensive materials collected during expeditions of P.P. Shirshov Institute of Oceanology. We consider facial conditions of nodule formation, regularities of their distribution, stratigraphic position, petrography, mineral composition, textures, geochemistry of nodules and hosting sediments. Origin of iron-manganese nodules in the Pacific Ocean is considered as well.