958 resultados para Ordenah manual
Resumo:
Sustainable Concrete Pavements: A Manual of Practice is a product of the National Concrete Pavement Technology Center at Iowa State University’s Institute for Transportation, with funding from the Federal Highway Administration (DTFH61-06-H-00011, Work Plan 23). Developed as a more detailed follow-up to a 2009 briefing document, Building Sustainable Pavement with Concrete, this guide provides a clear, concise, and cohesive discussion of pavement sustainability concepts and of recommended practices for maximizing the sustainability of concrete pavements. The intended audience includes decision makers and practitioners in both owner-agencies and supply, manufacturing, consulting, and contractor businesses. Readers will find individual chapters with the most recent technical information and best practices related to concrete pavement design, materials, construction, use/operations, renewal, and recycling. In addition, they will find chapters addressing issues specific to pavement sustainability in the urban environment and to the evaluation of pavement sustainability. Development of this guide satisfies a critical need identified in the Sustainability Track (Track 12) of the Long-Term Plan for Concrete Pavement Research and Technology (CP Road Map). The CP Road Map is a national research plan jointly developed by the concrete pavement stakeholder community, including Federal Highway Administration, academic institutions, state departments of transportation, and concrete pavement–related industries. It outlines 12 tracks of priority research needs related to concrete pavements. CP Road Map publications and other operations support services are provided by the National Concrete Pavement Technology Center at Iowa State University. For details about the CP Road Map, see www.cproadmap. org/index.cfm.
Resumo:
This manual was developed in cooperation with the Motorcycle Safety Foundation to help you prepare to safely ride a motorcycle. Contains information on motorcycle equipment, safety precautions, laws and earning your license.
Resumo:
A produção de mapas pedológicos por meio de técnicas do mapeamento digital de solos (MDS) pode ser dificultada pela falta de mapas pedológicos tradicionais de referência. Nessas situações, o conhecimento tácito do mapeador pode ser usado para o delineamento manual das unidades de mapeamento (UMs) a partir de geração de um mapa de ocorrência de tipos de solos preditos pelo MDS. Os objetivos deste estudo foram avaliar e comparar mapas de solos gerados por dois métodos, um denominado “MDS direto”, em que foi gerado um mapa preditor de UMs com base no modelo estabelecido com informações provenientes de um mapa pedológico convencional de referência preexistente, e outro em que o modelo preditor foi estabelecido a partir do exame de atributos morfológicos de 193 perfis de solo para identificar os tipos de solos, gerando-se um mapa com a indicação de ocorrência de tipos de solos sobre o qual foi realizado o delineamento manual das UMs, com base em mudanças das feições da superfície do solo. As predições foram feitas usando árvores de classificação Simple Cart,correlacionando oito variáveis do terreno com a ocorrência de UMs identificadas com nomes de classes de solos do Sistema Brasileiro de Classificação de Solos. A acurácia dos mapas foi avaliada pela “verdade de campo” (verificação em campo do tipo de solo ocorrente e comparação com o previsto no mapa) e pela concordância dos mapas gerados com o mapa de referência. Quando avaliado pela “verdade de campo”, a acurácia do mapa gerado pelo método MDS direto foi de 74 %, enquanto a acurácia do mapa de MDS com delineamento manual foi de 79 %. Os dois métodos apresentaram resultados satisfatórios; o método que usou o delineamento manual e a identificação em alguns locais dos tipos de solo no campo apresentou a vantagem de não necessitar de mapas pedológicos de referência para o treinamento dos modelos preditores.
Resumo:
Iowa Traffic Control Devices and Pavement Markings: A Manual for Cities and Counties has been developed to provide state and local transportation agencies with suggestions and examples related to traffic control devices and pavement markings. Both rural and urban applications are included. The primary source of information for this document is the Manual on Uniform Traffic Control Devices (MUTCD), but many additional references have also been used. A complete listing of these is included in the appendix to this manual, and the reader is invited to consult these references for more in-depth information. The contents of this manual are not intended to represent standard practice or to imply legal requirements for installation in any particular manner. This document should be used as a supplement to the MUTCD, not as a substitute for any requirements contained therein. Engineering judgement should be applied to all decisions regarding traffic control devices and pavement markings. All references to the MUTCD in this manual apply to the millennium edition. The reader should be aware that many millennium revisions are allowed phase-in periods by the Federal Highway Administration (FHWA), ranging from two to ten years. These extended compliance periods should be considered when making decisions regarding traffic control devices and pavement markings. A new addition to the MUTCD, Part 5, “Traffic Control Devices for Low-Volume Roads,” also contains valuable recommendations for signing and marking low volume roads. This manual is presented in an easy to use threering format. Topics included in the complete guide manual may not apply to all jurisdictions and can easily be removed or modified as desired. Desired millennium MUTCD sections may be added for quick reference using the divider at the end of this document. Contents may also be available on CD-ROM in the future.
Resumo:
Transportation agencies in Iowa are responsible for a significant public investment with the installation and maintenance of traffic control devices and pavement markings. Included in this investment are thousands of signs and other inventory items, equipment, facilities, and staff. The proper application of traffic control devices and pavement markings is critical to public safety on streets and highways, and local governments have a prescribed responsibility under the Code of Iowa to properly manage these assets. This research report addresses current traffic control and pavement marking application, maintenance, and management in Iowa.
Resumo:
The rules and regualtions for owning and operating a motorcycle in Iowa
Resumo:
El Projecte MODEVAL respon a la necessitat detectada en matèria d'avaluació de competències bàsiques de les persones, i tracta de definir quins són els nivells bàsics d'habilitats que garanteixen unes condicions individuals favorables per al desenvolupament de la persona, la ciutadania activa, i la integració social, cultural i professional dels individus. Mentre el projecte MODEVAL 1 tenia com a objectiu realitzar un marc de referència metodològic a nivell europeu per a dur a terme l'avaluació de competències; el projecte MODEVAL 2, és a dir, el present treball, té com a objectiu la creació de mòduls de formació per als diferents interessats (és a dir, formadors d'alfabetització i de formació bàsica, investigadors, coordinadors de centres de formació, els responsables polítics, estadístics, persones que realitzaran enquestes a gran escala sobre el coneixement de base, etc.) per tal d'aplicar les recomanacions del projecte i crear les seves pròpies eines d'avaluació.
Resumo:
The purpose of the Iowa EHDI Best Practices Manual is to advance the development of a comprehensive statewide early hearing detection and intervention (EHDI) system in Iowa. This manual will assist hospitals, birth centers, Area Education Agencies (AEAs), health care providers and private practice audiologists in developing programs and written protocols for newborn hearing screening, follow up and intervention. The manual is based upon best practices within early hearing detection and intervention programs and Iowa EHDI law and rules.
Resumo:
The varying title of this manual is : Coordinated Transportation Analysis and Management System. It gives instructions on how to use GeoMedia in order to integrate data from multiple sources and formats into one environment, perform sophisticated queries and spatial analyses, and quickly produce complex maps.
Resumo:
Stream degradation is the action of deepening the stream bed and widening the banks due to the increasing velocity of water flow. Degradation is pervasive in channeled streams found within the deep to moderately deep loess regions of the central United States. Of all the streams, however, the most severe and widespread entrenchment occurs in western Iowa streams that are tributaries to the Missouri River. In September 1995 the Iowa Department of Transportation awarded a grant to Golden Hills Resource Conservation and Development, Inc. The purpose of the grant, HR-385 "Stream Stabilization in Western Iowa: Structure Evaluation and Design Manual", was to provide an assessment of the effectiveness and costs of various stabilization structures in controlling erosion on channeled streams. A review of literature, a survey of professionals, field observations and an analysis of the data recorded on fifty-two selected structures led to the conclusions presented in the project's publication, Design Manual, Streambed Degradation and Streambank Widening in Western Iowa. Technical standards and specifications for the design and construction of stream channel stabilization structures are included in the manual. Additional information on non-structural measures, monitoring and evaluation of structures, various permit requirements and further resources are also included. Findings of the research project and use and applications of the Design Manual were presented at two workshops in the Loess Hills region. Participants in these workshops included county engineers, private contractors, state and federal agency personnel, elected officials and others. The Design Manual continues to be available through Golden Hills Resource Conservation and Development.
Resumo:
The authors have post-tensioned and monitored two Iowa bridges and have field tested the post-tensioning of a composite bridge in Florida. In order to provide the practical post-tensioning distribution factors given in this manual, the authors developed a finite element model of a composite bridge and checked the model against a one-half scale laboratory bridge and two actual composite bridges, one of which had a 45 deg skew. Following a brief discussion of this background research, this manual explains the use of elastic, composite beam and bridge section properties, the distribution fractions for symmetrically post-tensioned exterior beams, and a method for computing the strength of a post-tensioned beam. Also included is a design example for a typical, 51.25-ft (15.62-m) span, four-beam composite bridge. Moments for Iowa Department of Transportation rating trucks, H 20 and HS 20 trucks, have been tabulated for design convenience and are included in the appendix.
Resumo:
This report contains an evaluation and design manual for strengthening and replacing low volume steel stringer and timber stringer bridges. An advisory panel consisting of county and municipal engineers provided direction for the development of the manual. NBI bridge data, along with results from questionnaires sent to county and municipal engineers were used to formulate the manual. Types of structures shown to have the greatest need for cost-effective strengthening methods are steel stringer and timber stringer bridges. Procedures for strengthening these two types of structures have been developed. Various types of replacement bridges have also been included so that the most cost effective solution for a deficient bridge may be obtained. The key results of this study is an extensive compilation, which can be used by county engineers, of the most effective techniques for strengthening deficient existing bridges. The replacement bridge types included have been used in numerous low volume applications in surrounding states, as well as in Iowa. An economic analysis for determining the cost-effectiveness of the various strengthening methods and replacement bridges is also an important part of the manual. Microcomputer spreadsheet software for several of the strengthening methods, types of replacement bridges and for the economic analysis has been developed, documented and presented in the manual. So the manual, Chp. 3 of the final report, can be easily located, blue divider pages have been inserted to delineate the manual from the rest of the report.
Resumo:
The purpose of this manual is to organize, document, and combine Iowa Department of Transportation (Iowa DOT) policies and procedures for bridge inspection practices and post-inspection recommendations so Iowa DOT personnel, local agencies, and consultants will have a readily available resource for their use. Previously, bridge inspection policies and procedures were documented by various means, making it difficult to provide consistent answers to questions regarding bridge inspection topics. This manual is intended to ensure uniformity and document best practices for inspection of Iowa’s bridges, especially as experienced inspection personnel retire.