990 resultados para Oral bacterial microflora


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gram-negative bacteria are harmful in various surroundings. In the food industy their metabolites are potential cause of spoilage and this group also includes many severe or potential pathogens, such as Salmonella. Due to their ability to produce biofilms Gram-negative bacteria also cause problems in many industrial processes as well as in clinical surroundings. Control of Gram-negative bacteria is hampered by the outer membrane (OM) in the outermost layer of the cells. This layer is an intrinsic barrier for many hydrophobic agents and macromolecules. Permeabilizers are compounds that weaken OM and can thus increase the activity of antimicrobials by facililating entry of hydrophobic compounds and macromolecules into the cell where they can reach their target sites and inhibit or destroy cellular functions. The work described in this thesis shows that lactic acid acts as a permeabilizer and destabilizes the OM of Gram-negative bacteria. In addition, organic acids present in berriers, i.e. malic, sorbic and benzoic acid, were shown to weaken the OM of Gram-negative bacteria. Organic acids can poteniate the antimicrobial activity of other compounds. Microbial colonic degradation products of plant-derived phenolic compounds (3,4-dihydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, 3,4-dihydroxyphenylpropionic acid, 4-hydroxyphenylpropionic acid, 3-phenylpropionic acid and 3-hydroxyphenylpropionic acid) efficiently destabilized OM of Salmonella. The studies increase our understanding of the mechanism of action of the classical chelator, ethylenediaminetetra-acetic acid (EDTA). In addition, the results indicate that the biocidic activity of benzalkonium chloride against Pseudomonas can be increased by combined use with polyethylenimine (PEI). In addition to PEI, several other potential permeabilizers, such as succimer, were shown to destabilize the OM of Gram-negative bacteria. Furthermore, combination of the results obtained from various permeability assays (e.g. uptake of a hydrophobic probe, sensitization to hydrophobic antibiotics and detergents, release of lipopolysaccharide (LPS) and LPS-specific fatty acids) with atomic force microscopy (AFM) image results increases our knowledge of the action of permeabilizers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical composition of breast milk has been studied in detail in the past decades. Hundreds of new antibacterial and antiviral components have been found. Several molecules have been found to promote the proper function of neonatal intestine. However, microbiological studies of breast milk have been, until recently, focused mainly on detecting harmful and pathogenic bacteria and viruses. Natural microbial diversity of human milk has not been widely studied before the work reported in this thesis. This is mainly because breast milk has traditionally been thought to be sterile - even if a certain amount of commensal bacteria have usually been detected in milk samples. The first part of this licentiate thesis contains a short literature review about the anatomy and physiology of breast feeding, human milk chemical and microbiological composition, mastitis, intestinal flora and bacteriocins. The second part reports on the experiments of the licentiate work, concentrating on the microbial diversity in the milk of healthy breast-feeding mothers, and the ability of these bacteria to produce antibacterial substances against pathogenic bacteria. The results indicate that human milk is a source of commensal bacteria for infant intestine. 509 random isolates from 40 breast milk samples were isolated and identified by 16S rRNA sequencing. Median bacterial count was about 600 colony forming units per milliliter. Over half of the isolates were staphylococci, and almost one third streptococci. The most common species were skin bacteria Staphylococcus epidermidis and oral bacteria Streptococcus salivarius and Streptococcus mitis. Lactic acid bacteria, identified as members of Lactobacillus-, Lactococcus- and Leuconostoc -genera, were found in five milk samples. Enterococci were found in three samples. A novel finding in this study is the capability of these commensal bacteria to inhibit the growth of pathogens. In 90 precent of the milk samples commensal bacteria inhibiting the growth of Staphylococcus aureus were found. In 40 precent of samples the colonies could block the growth completely. One fifth of the isolated Staph. epidermidis strains, half of Str. salivarius strains, and all lactic acid bacteria and enterococci could inhibit or block the growth of Staph. aureus. In further study also Listeria innocua- and Micrococcus luteus active isolates were found in 33 and 11 precent of milk samples (out of 140). Furthermore, two Lactococcus lactis isolates from the breast milk were shown to produce bacteriocin nisin, which is an antimicrobial molecule used as a food preservative. The importance of these human milk commensal bacteria in the development of newborn intestinal flora and immune system, as well as in preventing maternal breast infections, should be further explored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial proliferation in both vase solutions and in cut flower stems has been implicated in reducing the vase life of numerous genera. Boronia heterophylla F. Muell. (Red Boronia) vase life was assessed at two stages of floral maturity for nine vase solution treatments covering a pH range of 2.5-5.7. Vase life for advanced harvest maturity stems ranged from 4.2 d in 10 mM citric acid + 50 mg L-1 chlorine (pH 2.5) to 12.9 d after STS pulsing (pH 5.7). For normal harvest maturity stems, the corresponding range was 5.8-19.0 d, respectively. Vase solutions containing 50 mg L-1 chlorine biocide resulted in decreased longevity. In contrast, pulsing with the ethylene-binding inhibitor, STS, significantly increased vase life. The number of bacteria in the vase solutions after 11 d was determined in stems of advanced maturity. The solution with the greatest number of bacteria, 4.0 x 10(10) cfu mL(-1), was water used after STS pulsing and in which the flowers lasted longest. Vase solution bacteria were enumerated on days 0,3, 6, 9 and 12 of the vase period with stems of normal harvest maturity. There was no relationship between vase life and vase solution bacterial numbers ((R) over bar (2) = 0.000). Moreover, there was a negative relationship between numbers of bacteria in basal 0-5 cm stem segments and vase life. As no correlations were evident between longevity and either the pH or vase solution bacterial numbers, B. heterophylla vase life was evidently limited principally by ethylene action. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acetaminophen (paracetamol) is available in a wide range of oral formulations designed to meet the needs of the population across the age-spectrum, but for people with impaired swallowing, i.e. dysphagia, both solid and liquid medications can be difficult to swallow without modification. The effect of a commercial polysaccharide thickener, designed to be added to fluids to promote safe swallowing by dysphagic patients, on rheology and acetaminophen dissolution was tested using crushed immediate-release tablets in water, effervescent tablets in water, elixir and suspension. The inclusion of the thickener, comprised of xanthan gum and maltodextrin, had a considerable impact on dissolution; acetaminophen release from modified medications reached 12-50% in 30 minutes, which did not reflect the pharmacopeia specification for immediate release preparations. Flow curves reflect the high zero-shear viscosity and the apparent yield stress of the thickened products. The weak gel nature, in combination with high G’ values compared to G” (viscoelasticity) and high apparent yield stress, impact drug release. The restriction on drug release from these formulations is not influenced by the theoretical state of the drug (dissolved or dispersed), and the approach typically used in clinical practice (mixing crushed tablets into pre-prepared thickened fluid) cannot be improved by altering the order of incorporation or mixing method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Establishment of the rumen microbiome can be affected by both early-life dietary measures and rumen microbial inoculation. This study used a 2 × 3 factorial design to evaluate the effects of inclusion of dietary fat type and the effects of rumen inoculum from different sources on ruminal bacterial communities present in early stages of the lambs’ life. Two different diets were fed ad libitum to 36 pregnant ewes (and their lambs) from 1 month pre-lambing until weaning. Diets consisted of chaffed lucerne and cereal hay and 4% molasses, with either 4% distilled coconut oil (CO) provided as a source of rumen-active fat or 4% Megalac® provided as a source of rumen-protected fat (PF). One of three inoculums was introduced orally to all lambs, being either (1) rumen fluid from donor ewes fed the PF diet; (2) rumen fluid from donor ewes fed CO; or (3) a control treatment of MilliQ-water. After weaning at 3 months of age, each of the six lamb treatment groups were grazed in spatially separated paddocks. Rumen bacterial populations of ewes and lambs were characterised using 454 amplicon pyrosequencing of the V3/V4 regions of the 16S rRNA gene. Species richness and biodiversity of the bacterial communities were found to be affected by the diet in ewes and lambs and by inoculation treatment of the lambs. Principal coordinate analysis and analysis of similarity (ANOSIM) showed between diet differences in bacterial community groups existed in ewes and differential bacterial clusters occurred in lambs due to both diet and neonatal inoculation. Diet and rumen inoculation acted together to clearly differentiate the bacterial communities through to weaning, however the microbiome effects of these initial early life interventions diminished with time so that rumen bacterial communities showed greater similarity 2 months after weaning. These results demonstrate that ruminal bacterial communities of newborn lambs can be altered by modifying the diet of their mothers. Moreover, the rumen microbiome of lambs can be changed by diet while they are suckling or by inoculating their rumen, and resulting changes in the rumen bacterial microbiome can persist beyond weaning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteria play an important role in many ecological systems. The molecular characterization of bacteria using either cultivation-dependent or cultivation-independent methods reveals the large scale of bacterial diversity in natural communities, and the vastness of subpopulations within a species or genus. Understanding how bacterial diversity varies across different environments and also within populations should provide insights into many important questions of bacterial evolution and population dynamics. This thesis presents novel statistical methods for analyzing bacterial diversity using widely employed molecular fingerprinting techniques. The first objective of this thesis was to develop Bayesian clustering models to identify bacterial population structures. Bacterial isolates were identified using multilous sequence typing (MLST), and Bayesian clustering models were used to explore the evolutionary relationships among isolates. Our method involves the inference of genetic population structures via an unsupervised clustering framework where the dependence between loci is represented using graphical models. The population dynamics that generate such a population stratification were investigated using a stochastic model, in which homologous recombination between subpopulations can be quantified within a gene flow network. The second part of the thesis focuses on cluster analysis of community compositional data produced by two different cultivation-independent analyses: terminal restriction fragment length polymorphism (T-RFLP) analysis, and fatty acid methyl ester (FAME) analysis. The cluster analysis aims to group bacterial communities that are similar in composition, which is an important step for understanding the overall influences of environmental and ecological perturbations on bacterial diversity. A common feature of T-RFLP and FAME data is zero-inflation, which indicates that the observation of a zero value is much more frequent than would be expected, for example, from a Poisson distribution in the discrete case, or a Gaussian distribution in the continuous case. We provided two strategies for modeling zero-inflation in the clustering framework, which were validated by both synthetic and empirical complex data sets. We show in the thesis that our model that takes into account dependencies between loci in MLST data can produce better clustering results than those methods which assume independent loci. Furthermore, computer algorithms that are efficient in analyzing large scale data were adopted for meeting the increasing computational need. Our method that detects homologous recombination in subpopulations may provide a theoretical criterion for defining bacterial species. The clustering of bacterial community data include T-RFLP and FAME provides an initial effort for discovering the evolutionary dynamics that structure and maintain bacterial diversity in the natural environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project describes how Streptococcus agalactiae can be transmitted experimentally in Queensland grouper. The implications of this research furthers the relatedness between Australian S. agalactiae strains from animals and humans. Additionally, this research has developed diagnostic tools for Australian State Veterinary Laboratories and Universities, which will assist in State and National aquatic animal disease detection, surveillance, disease monitoring and reporting

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation was conducted to study the levels of nitrogen fixation on the leaf or sheath surfaces of four cultivars of paddy plants by using acetylene reduction technique. Varying levels of positive nitrogenase activity were observed on all the leaf surfaces. Sheath of IET 1991 cultivar showed a higher rate of fixation than the leaf surface. All the nitrogen-fixing organisms on the leaf or sheath surfaces belonged to the genus Beijerinckia. There was no correlation between the bacterial density and the level of fixation. Scanning electron microscopic data revealed that the upper surface of IET 1991 leaf was highly silicified and the microflora was either scanty or nil while the lower surface appeared quite different and harboured more micro-organisms. Similarly, the inner surface of sheath was devoid of silicification and showed the presence of micro-organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation was conducted to study the levels of nitrogen fixation on the leaf or sheath surfaces of four cultivars of paddy plants by using acetylene reduction technique. Varying levels of positive nitrogenase activity were observed on all the leaf surfaces. Sheath of IET 1991 cultivar showed a higher rate of fixation than the leaf surface. All the nitrogen-fixing organisms on the leaf or sheath surfaces belonged to the genus Beijerinckia. There was no correlation between the bacterial density and the level of fixation. Scanning electron microscopic data revealed that the upper surface of IET 1991 leaf was highly silicified and the microflora was either scanty or nil while the lower surface appeared quite different and harboured more micro-organisms. Similarly, the inner surface of sheath was devoid of silicification and showed the presence of micro-organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface proteolysis is important in migration of cells through tissue barriers. In the case of prokaryotes, surface proteolysis has been associated with invasiveness of pathogenic bacteria from the primary infection site into circulation and secondary infection sites in the host. This study addressed surface proteases of two important bacterial pathogens, Yersinia pestis which is the causative agent of the lethal systemic zoonosis, plague, and Salmonella enterica serovar Typhimurium which is an oral-faecal pathogen that annually causes millions of cases of gastoenteritis that may develop to septicaemia. Both bacterial species express an ortholog of the omptin family of transmembrane β-barrel, outer membrane proteases/adhesins. This thesis work addressed the functions of isolated plasminogen activator Pla of Y. pestis and the PgtE omptin of S. enterica. Pla and PgtE were isolated as His6-fusion proteins in denaturing conditions from recombinant Escherichia coli and activated by adding lipopolysaccharide (LPS). The structural features in LPS that enhance plasminogen activation by His6-Pla were determined, and it was found that the lack of O-specifi c chain, the presence of outer core oligosaccharide, the presence of phosphates in lipid A, as well as a low level of acylation in lipid A influence the enhancement of Pla activity by LPS. A conserved lipid A phosphate binding motif in Pla and PgtE was found important for the enhancement of enzymatic activity by LPS. The results help to explain the biological signifi cance of the genetic loss of the O-specifi c chain biosynthesis in Y. pestis as well as the variations in LPS structure upon entry of Y. pestis into the human host. Expression of Pla in Y. pestis is associated with adhesiveness to lamin of basement membranes. Here, isolated and LPS-activated His6-Pla was coated onto fluorescent microparticles. The coating conferred specifi c adhesiveness of the particles to laminin and reconstituted basement membrane, thus confi rming the intrinsic adhesive characteristics of the Pla protein. The adhesiveness is thought to direct plasmin proteolysis at tissue barriers, thus increasing tissue damage and bacterial spread. Gelatinase activity has not been previously reported in enteric bacteria. Expression of PgtE in S. enterica was associated with cleavage of porcine skin gelatin, denaturated human type I collagen, as well as DQ-gelatin. Purifi ed His6-PgtE also degraded porcine skin gelatin and human type I gelatin but did not react with DQ-gelatin, indicating that minor differences are seen in proteolysis by isolated and cell-bound PgtE. Pla was less effective in gelatin degradation. The novel gelatinase activity in S. enterica is likely to enhance bacterial dissemination during infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The product of the bglG gene of Escherichia coli was among the first bacterial antiterminators to be identified and characterized. Since the elucidation ten years ago of its role in the regulation of the bgl operon of E. coli,a large number of homologies have been discovered in both Gram-positive and Gram-negative bacteria. Often the homologues of BglG in other organisms are also involved in regulating β-glucoside utilization. Surprisingly, in many cases, they mediate antitermination to regulate a variety of other catabolic functions. Because of the high degree of conservation of the cis-acting regulatory elements, antiterminators from one organism can function in another. Generally the antiterminator protein itself is negatively regulated by phosphorylation by a component of the phosphotransferase system. This family of proteins thus represents a highly evolved regulatory system that is conserved across evolutionarily distant genuses.