949 resultados para Optimized cooling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent trends, such as Software-Defined Networking (SDN), introduce programmability to the network with the opportunity to dynamically route traffic based on flow descriptions. Packet header lookup is the first phase in this process. In this paper, we illustrate improved header lookup and flow rule update speeds over conventional lookup algorithms. This is achieved by performing individual packet header field searches and combining the search results. We propose that individual algorithms should be selected for packet classification based on the application requirements. Improving the network processing performance with our configurable solution will directly support the proposed capability of programmability in SDN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BaH (and its isotopomers) is an attractive molecular candidate for laser cooling to ultracold temperatures and a potential precursor for the production of ultracold gases of hydrogen and deuterium. The theoretical challenge is to simulate the laser cooling cycle as reliably as possible and this paper addresses the generation of a highly accurate ab initio $^{2}\Sigma^+$ potential for such studies. The performance of various basis sets within the multi-reference configuration-interaction (MRCI) approximation with the Davidson correction (MRCI+Q)is tested and taken to the Complete Basis Set (CBS) limit. It is shown that the calculated molecular constants using a 46 electron Effective Core-Potential (ECP) and even-tempered augmented polarized core-valence basis sets (aug-pCV$n$Z-PP, n= 4 and 5) but only including three active electrons in the MRCI calculation are in excellent agreement with the available experimental values. The predicted dissociation energy De for the X$^2\Sigma^+$ state (extrapolated to the CBS limit) is 16895.12 cm$^{-1}$ (2.094 eV), which agrees within 0.1$\%$ of a revised experimental value of <16910.6 cm$^{-1}$, while the calculated re is within 0.03 pm of the experimental result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conversion of biomass for the production of liquid fuels can help reduce the greenhouse gas (GHG) emissions that are predominantly generated by the combustion of fossil fuels. Oxymethylene ethers (OMEs) are a series of liquid fuel additives that can be obtained from syngas, which is produced from the gasification of biomass. The blending of OMEs in conventional diesel fuel can reduce soot formation during combustion in a diesel engine. In this research, a process for the production of OMEs from woody biomass has been simulated. The process consists of several unit operations including biomass gasifi- cation, syngas cleanup, methanol production, and conversion of methanol to OMEs. The methodology involved the development of process models, the identification of the key process parameters affecting OME production based on the process model, and the development of an optimal process design for high OME yields. It was found that up to 9.02 tonnes day1 of OME3, OME4, and OME5 (which are suitable as diesel additives) can be produced from 277.3 tonnes day1 of wet woody biomass. Furthermore, an optimal combination of the parameters, which was generated from the developed model, can greatly enhance OME production and thermodynamic efficiency. This model can further be used in a techno- economic assessment of the whole biomass conversion chain to produce OMEs. The results of this study can be helpful for petroleum-based fuel producers and policy makers in determining the most attractive pathways of converting bio-resources into liquid fuels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A relatively simple, selective, precise and accurate high performance liquid chromatography (HPLC) method based on a reaction of phenylisothiocyanate (PITC) with glucosamine (GL) in alkaline media was developed and validated to determine glucosamine hydrochloride permeating through human skin in vitro. It is usually problematic to develop an accurate assay for chemicals traversing skin because the excellent barrier properties of the tissue ensure that only low amounts of the material pass through the membrane and skin components may leach out of the tissue to interfere with the analysis. In addition, in the case of glucosamine hydrochloride, chemical instability adds further complexity to assay development. The assay, utilising the PITC-GL reaction was refined by optimizing the reaction temperature, reaction time and PITC concentration. The reaction produces a phenylthiocarbamyl-glucosamine (PTC-GL) adduct which was separated on a reverse-phase (RP) column packed with 5 microm ODS (C18) Hypersil particles using a diode array detector (DAD) at 245 nm. The mobile phase was methanol-water-glacial acetic acid (10:89.96:0.04 v/v/v, pH 3.5) delivered to the column at 1 ml min-1 and the column temperature was maintained at 30 degrees C. Galactosamine hydrochloride (Gal-HCl) was used as an internal standard. Using a saturated aqueous solution of glucosamine hydrochloride, in vitro permeation studies were performed at 32+/-1 degrees C over 48 h using human epidermal membranes prepared by a heat separation method and mounted in Franz-type diffusion cells with a diffusional area 2.15+/-0.1 cm2. The optimum derivatisation reaction conditions for reaction temperature, reaction time and PITC concentration were found to be 80 degrees C, 30 min and 1% v/v, respectively. PTC-Gal and GL adducts eluted at 8.9 and 9.7 min, respectively. The detector response was found to be linear in the concentration range 0-1000 microg ml-1. The assay was robust with intra- and inter-day precisions (described as a percentage of relative standard deviation, %R.S.D.) <12. Intra- and inter-day accuracy (as a percentage of the relative error, %RE) was <or=-5.60 and <or=-8.00, respectively. Using this assay, it was found that GL-HCl permeates through human skin with a flux 1.497+/-0.42 microg cm-2 h-1, a permeability coefficient of 5.66+/-1.6x10(-6) cm h-1 and with a lag time of 10.9+/-4.6 h.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A utilização de equipamentos de climatização é cada vez mais frequente, e surgem novas tecnologias para aumentar a eficiência do processo, e neste caso, a opção da instalação de um sistema de Unidade de Tratamento de Ar com Economizador é a fundamental temática deste trabalho de dissertação. O “Free-Cooling” baseia-se na utilização total ou parcial do ar exterior para proceder à climatização de um espaço, quando se verificam as condições ótimas para o processo, e quando o sistema apresenta um controlador que permita gerir a abertura dos registos face à temperatura exterior e interior medida. A análise das condições exteriores e interiores é fundamental para dimensionar um Economizador. É necessário determinar o tipo de clima do local para fazer a seleção do tipo de controlo do processo, e recolher também, o perfil de temperaturas exterior para justificar a utilização de “Free-Cooling” no local. A determinação das condições interiores como a quantificação da utilização da iluminação, ocupação e equipamentos, é necessária para determinar a potência das baterias de arrefecimento ou aquecimento, e no caso de ser utilizado “Free-Cooling”, determinar o caudal de ar exterior a insuflar. O balanço térmico das instalações explicita todas as cargas influentes no edifício, e permite quantificar a potência necessária para climatização. Depois, adicionando o Economizador no sistema e comparando os dois sistemas, verifica-se a redução dos custos de utilização da bateria de arrefecimento. O desenvolvimento de um algoritmo de controlo é fundamental para garantir a eficiência do Economizador, onde o controlo dos registos de admissão e retorno de ar é obrigatoriamente relacionado com a leitura dos sensores de temperatura exterior e interior. A quantidade de ar novo insuflado no espaço depende, por fim, da relação entre a carga sensível do local e a diferença de temperatura lida entre os dois sensores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Smart canula concept allows for collapsed cannula insertion, and self-expansion within a vein of the body. (A) Computational fluid dynamics, and (B) bovine experiments (76+/-3.8 kg) were performed for comparative analyses, prior to (C) the first clinical application. For an 18F access, a given flow of 4 l/min (A) resulted in a pressure drop of 49 mmHg for smart cannula versus 140 mmHg for control. The corresponding Reynolds numbers are 680 versus 1170, respectively. (B) For an access of 28F, the maximal flow for smart cannula was 5.8+/-0.5 l/min versus 4.0+/-0.1 l/min for standard (P<0.0001), for 24F 5.5+/-0.6 l/min versus 3.2+/-0.4 l/min (P<0.0001), and for 20F 4.1+/-0.3 l/min versus 1.6+/-0.3 l/min (P<0.0001). The flow obtained with the smart cannula was 270+/-45% (20F), 172+/-26% (24F), and 134+/-13% (28F) of standard (one-way ANOVA, P=0.014). (C) First clinical application (1.42 m2) with a smart cannula showed 3.55 l/min (100% predicted) without additional fluids. All three assessment steps confirm the superior performance of the smart cannula design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human neuromuscular system is susceptible to changes within the thermal environment. Cold extrinsic temperatures can significantly reduce muscle and nervous system function and communication, which can have consequences for motor performance. A repeated measures design protocol exposed participants to a 12°C cold water immersion (CWI) up to the ankle, knee, and hip to determine the effect that reduced skin and muscle temperature had on balance and strength task execution. Although a linear reduction in the ability to perform balance tasks was seen from the control condition through to the hip CWI, results from the study indicated a significant reduction in dynamic balance (Star Excursion Balance Test reach distance) performance from only the hip CWI (P<0.05). This reduced performance could have been due to an increase in joint stiffness, increased agonist-antagonist co-contraction, and/or reduced isokinetic muscular strength. Reduced physical performance due to cold temperature could negatively impact outdoor recreational athletics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rattlesnakes use their facial pit organs to sense external thermal fluctuations. A temperature decrease in the heat-sensing membrane of the pit organ has the potential to enhance heat flux between their endothermic prey and the thermal sensors, affect the optimal functioning of thermal sensors in the pit membrane and reduce the formation of thermal ‘‘afterimages’’, improving thermal detection. We examined the potential for respiratory cooling to improve strike behaviour, capture, and consumption of endothermic prey in the South American rattlesnake, as behavioural indicators of thermal detection. Snakes with a higher degree of rostral cooling were more accurate during the strike, attacking warmer regions of their prey, and relocated and consumed their prey faster. These findings reveal that by cooling their pit organs, rattlesnakes increase their ability to detect endothermic prey; disabling the pit organs caused these differences to disappear. Rattlesnakes also modify the degree of rostral cooling by altering their breathing pattern in response to biologically relevant stimuli, such as a mouse odour. Our findings reveal that low humidity increases their ability to detect endothermic prey, suggesting that habitat and ambush sites election in the wild may be influenced by external humidity levels as well as temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on measurements of the adiabatic temperature change in the inverse magnetocaloric Ni50Mn34In16 alloy. It is shown that this alloy heats up with the application of a magnetic field around the Curie point due to the conventional magnetocaloric effect. In contrast, the inverse magnetocaloric effect associated with the martensitic transition results in the unusual decrease of temperature by adiabatic magnetization. We also provide magnetization and specific heat data which enable to compare the measured temperature changes to the values indirectly computed from thermodynamic relationships. Good agreement is obtained for the conventional effect at the second-order paramagnetic-ferromagnetic phase transition. However, at the first-order structural transition the measured values at high fields are lower than the computed ones. Irreversible thermodynamics arguments are given to show that such a discrepancy is due to the irreversibility of the first-order martensitic transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate chaotic, memory, and cooling rate effects in the three-dimensional Edwards-Anderson model by doing thermoremanent (TRM) and ac susceptibility numerical experiments and making a detailed comparison with laboratory experiments on spin glasses. In contrast to the experiments, the Edwards-Anderson model does not show any trace of reinitialization processes in temperature change experiments (TRM or ac). A detailed comparison with ac relaxation experiments in the presence of dc magnetic field or coupling distribution perturbations reveals that the absence of chaotic effects in the Edwards-Anderson model is a consequence of the presence of strong cooling rate effects. We discuss possible solutions to this discrepancy, in particular the smallness of the time scales reached in numerical experiments, but we also question the validity of the Edwards-Anderson model to reproduce the experimental results.