718 resultados para Optical fiber testing


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microwave signal generation by using the photonic beating from a phase-shift fiber Bragg grating (PS-FBG)-based dual-wavelength laser is proposed and experimentally demonstrated. The dual-wavelength laser is formed by a linear cavity, in which a PS-FBG is used as a dual-wavelength selective component. Transversal loading on the PS-FBG enhances the birefringence of the optical fiber and consequently makes the transmission peak of the PS-FBG splitting into two sharp transmission peaks of orthogonal polarizations. The wavelength spacing between the two transmission peaks increases with the transversal loading on the PS-FBG, thus making the polarization beating frequency increase. This property is exploited in a transversal loading sensor.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A hybrid waveguide Bragg grating in optical fiber was fabricated and characterized, showing thermal responsivity of 211pm/°C. Proposed being used in fiber sensor, it demonstrates enhanced resolution by 20x and 2x for temperature and strain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We demonstrate a liquid level sensor based on the surrounding medium refractive index (SRI) sensing using of an excessively tilted fibre Bragg grating (ETFBG). The sensor has low thermal cross sensitivity and high SRI responsivity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A 1.2 µm (height) × 125 µm (depth) × 500 µm (length) microslot along a fiber Bragg grating was engraved across the optical fiber by femtosecond laser patterning and chemical etching. By filling epoxy in the slot and subsequent UV curing, a hybrid waveguide grating structure with a polymer core and glass cladding was fabricated. The obtained device is highly thermally responsive with linear coefficient of 211 pm/°C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report a compact two-dimensional accelerometer based upon a simple fiber cantilever constructed from a short length of multicore optical fiber. Two-axis measurement is demonstrated up to 3 kHz. Differential measurement between fiber Bragg gratings written in the multicore fiber provides temperature- insensitive measurements.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We demonstrate a novel glucose sensor based on an optical fiber grating with an excessively tilted index fringe structure and its surface modified by glucose oxidase (GOD). The aminopropyltriethoxysilane (APTES) was utilized as binding site for the subsequent GOD immobilization. Confocal microscopy and fluorescence microscope were used to provide the assessment of the effectiveness in modifying the fiber surface. The resonance wavelength of the sensor exhibited red-shift after the binding of the APTES and GOD to the fiber surface and also in the glucose detection process. The red-shift of the resonance wavelength showed a good linear response to the glucose concentration with a sensitivity of 0.298nm(mg/ml)-1 in the very low concentration range of 0.0∼3.0mg/ml. Compared to the previously reported glucose sensor based on the GOD-immobilized long period grating (LPG), the 81° tilted fiber grating (81°-TFG) based sensor has shown a lower thermal cross-talk effect, better linearity and higher Q-factor in sensing response. In addition, its sensitivity for glucose concentration can be further improved by increasing the grating length and/or choosing a higher-order cladding mode for detection. Potentially, the proposed techniques based on 81°-TFG can be developed as sensitive, label free and micro-structural sensors for applications in food safety, disease diagnosis, clinical analysis and environmental monitoring.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We demonstrate that ultralong Raman lasers can be used to generate a transmission medium with simultaneous transparency over the spatial and the spectral domains. Numerical calculations show this cross-domain transparency to be preserved when the medium is used for transmitting high-intensity signals, which makes ultralong lasers an ideal experimental test bed for the study of multifrequency nonlinear interactions in optical fiber waveguides. Full spatiospectral transparency is experimentally obtained over a 20 nm x 20 km window.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A frequency-modulated continuous-wave technique is used to detect the presence of frequency shifts in the Rayleigh-backscattered light in a single-mode optical fiber as a result of a changing temperature. The system is able to detect a rate of temperature change of 0.014 K/s, when a 20-cm length of fiber is heated. The system is also able to demonstrate a spatial resolution of better than 15 cm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report an implementation of optical fibre sensors based on fibre Bragg gratings with excessively tilted (>45°) structures, showing distinctive polarisation characteristics, desirable low thermal-cross-sensitivity and enhanced responsivity to surrounding-medium-refractive-index.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report on inscription of microchannels of different widths in optical fiber using femtosecond (fs) laser inscription assisted chemical etching and the narrowest channel has been created with a width down to only 1.2µm. Microchannels with 5µm and 35µm widths were fabricated together with Fabry-Pérot (FP) cavities formed by UV laser written fiber Bragg gratings (FBGs), creating high function and linear response refractometers. The device with a 5µm microchannel has exhibited a refractive index (RI) detection range up to 1.7, significantly higher than all fiber grating RI sensors. In addition, the microchannel FBG FP structures have been theoretically simulated showing excellent agreement with experimental measured characteristics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We analyze the physical mechanisms limiting optical fiber resonator length and report on the longest ever laser cavity, reaching 270 km, which shows a clearly resolvable mode structure with a width of ~120??Hz and peak separation of ~380Hz in the radio-frequency spectrum.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report the fabrication and characterization of a fiber Bragg grating (FBG) with 870 nm resonance wavelength in a single-mode TOPAS microstructured polymer optical fiber (mPOF). The grating has been UV-written with the phasemask technique using a 325 nm HeCd laser. The static tensile strain sensitivity has been measured as 0.64 pm/µstrain, and the temperature sensitivity was -60 pm/°C. This is the first 870nm FBG and the first demonstration of a negative temperature response for the TOPAS FBG, for which earlier results have indicated a positive temperature response. The relatively low material loss of the fiber at this wavelength compared to that at longer wavelengths will considerably enhance the potential utility of the TOPAS FBG.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Optical fiber materials exhibit a nonlinear response to strong electric fields, such as those of optical signals confined within the small fiber core. Fiber nonlinearity is an essential component in the design of the next generation of advanced optical communication systems, but its use is often avoided by engineers because of its intractability. The application of nonlinear technologies in fiber optics offers new opportunities for the design of photonic systems and devices. In this chapter, we make an overview of recent progress in mathematical theory and practical applications of temporal dissipative solitons and self-similar nonlinear structures in optical fiber systems. The design of all-optical high-speed signal processing devices, based on nonlinear dissipative structures, is discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present the first experimental demonstration (to our knowledge) of long-distance unperturbed fundamental optical soliton transmission in conventional single-mode optical fiber. The virtual transparency in the fiber required for soliton transmission, over 15 complete periods, was achieved by using an ultralong Raman fiber laser amplification scheme. Optical soliton pulse duration, pulse bandwidth, and peak intensity are shown to remain constant along the transmission length. Frequency-resolved optical gating spectrograms and numerical simulations confirm the observed optical soliton dynamics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this letter, we report on the inscription of a fourth-order fiber Bragg grating made line-by-line in the optical fiber using a femtosecond laser. Strong Bragg resonance (~17 dB) and low insertion loss (~0.5 dB) were obtained with only 2000 periods. Measured refractive index change of these inscribed lines reaches up to 7 × 10-3. The grating was fully characterized and the low insertion loss together with low polarization-dependent loss were realized compared to gratings made by the point-by-point method. The high temperature annealing experiment shows the grating can survive up to at least 800°C.