985 resultados para Optical bias control
Resumo:
PURPOSE To identify the factors responsible for the poor validity of the most common aniseikonia tests, which involve size comparisons of red-green stimuli presented haploscopically. METHODS Aniseikonia was induced by afocal size lenses placed before one eye. Observers compared the sizes of semicircles presented haploscopically via color filters. The main factor under study was viewing mode (free viewing versus short presentations under central fixation). To eliminate response bias, a three-response format allowed observers to respond if the left, the right, or neither semicircle appeared larger than the other. To control decisional (criterion) bias, measurements were taken with the lens-magnified stimulus placed on the left and on the right. To control for size-color illusions, measurements were made with color filters in both arrangements before the eyes and under binocular vision (without color filters). RESULTS Free viewing resulted in a systematic underestimation of lens-induced aniseikonia that was absent with short presentations. Significant size-color illusions and decisional biases were found that would be mistaken for aniseikonia unless appropriate action is taken. CONCLUSIONS To improve their validity, aniseikonia tests should use short presentations and include control conditions to prevent contamination from decisional/response biases. If anaglyphs are used, presence of size-color illusions must be checked for. TRANSLATIONAL RELEVANCE We identified optimal conditions for administration of aniseikonia tests and appropriate action for differential diagnosis of aniseikonia in the presence of response biases or size-color illusions. Our study has clinical implications for aniseikonia management.
Resumo:
A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite-data records. Here we describe the data compiled for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT, GeP&CO), span between 1997 and 2012, and have a global distribution. Observations of the following variables were compiled: spectral remote-sensing reflectances, concentrations of chlorophyll a, spectral inherent optical properties and spectral diffuse attenuation coefficients. The data were from multi-project archives acquired via the open internet services or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenisation, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The final result is a merged table designed for validation of satellite-derived ocean-colour products and available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) were preserved throughout the work and made available in the final table. Using all the data in a validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. By making available the metadata, it is also possible to analyse each set of data separately. The compiled data are available at doi: 10.1594/PANGAEA.854832 (Valente et al., 2015).
Resumo:
Oceans environmental monitoring and seafloor exploitation need in situ sensors and optical devices (cameras, lights) in various locations and on various carriers in order to initiate and to calibrate environmental models or to operate underwater industrial process supervision. For more than 10 years Ifremer deploys in situ monitoring systems for various seawater parameters and in situ observation systems based on lights and HD Cameras. To be economically operational, these systems must be equipped with a biofouling protection dedicated to the sensors and optical devices used in situ. Indeed, biofouling, in less than 15 days [1] will modify the transducing interfaces of the sensors and causes unacceptable bias on the measurements provided by the in situ monitoring system. In the same way biofouling will decrease the optical properties of windows and thus altering the lighting and the quality fot he images recorded by the camera.
Resumo:
The ionic nitriding process presents some limitations related with the control of the thickness of the layer and its uniformity. Those limitations that happen during the process, are produced due to edge effects, damage caused by arcing arc and hollow cathode, mainly in pieces with complex geometry and under pressures in excess of 1 mbar. A new technique, denominated ASPN (active screen shapes nitriding) it has been used as alternative, for offering many advantages with respect to dc plasma conventional. The developed system presents a configuration in that the samples treated are surrounded by a large metal screen at high voltage cathodic potencials, (varying between 0 and 1200V) and currents up to 1 A. The sample is placed in floting potential or polarized at relatively lower bias voltages by an auxiliary source. As the plasma is not formed directly in the sample surface but in the metal screen, the mentioned effects are eliminated. This mechanism allows investigate ion of the transfer of nitrogen to the substrate. Optical and electronic microscopy are used to exam morphology and structure at the layer. X-ray difration for phase identification and microhardness to evaluate the efficiency of this process with respect to dc conventional nitriding
Resumo:
Ultrafast laser owns extreme small beam size and high pulse intensity which enable spatial localised modification either on the surface or in the bulk of materials. Therefore, ultrafast laser has been widely used to micromachine optical fibres to alter optical structures. In order to do the precise control of the micromachining process to achieve the desired structure and modification, investigations on laser parameters control should be carried out to make better understanding of the effects in the laser micromachining process. These responses are important to laser machining, most of which are usually unknown during the process. In this work, we report the real time monitored results of the reflection of PMMA based optical fibre Bragg gratings (POFBGs) during excimer ultraviolet laser micromachining process. Photochemical and thermal effects have been observed during the process. The UV radiation was absorbed by the PMMA material, which consequently induced the modifications in both spatial structure and material properties of the POFBG. The POFBG showed a significant wavelength blue shift during laser micromachining. Part of it attributed to UV absorption converted thermal energy whilst the other did not disappear after POFBG cooling off, which attributed to UV induced photodegradation in POF.
Resumo:
Water contamination can cause serious problems that compromise in transformer's safe operation and reduce its lifetime. Online monitoring of moisture concentration in transformer oil would permit the control of moisture buildup. This letter presents a direct optical measurement of moisture concentration in transformer oil using a poly(methyl methacrylate) (PMMA)-based optical fiber Bragg grating (POFBG). The refractive index and volume of PMMA-based optical fiber vary with the moisture in the surrounding transformer oil, changing the reflecting wavelength of the grating. A sensitivity of POFBG wavelength change to moisture content of 29 pm/ppm is demonstrated in this letter, indicating detectable water content better than 0.05 ppm.
Resumo:
Background Pelvic floor muscle training (PFMT) is a commonly used physical therapy for women with urinary incontinence (UI). Objectives To determine the effects of PFMT for women with UI in comparison to no treatment, placebo or other inactive control treatments. Search Methods Cochrane Incontinence Group Specialized Register, (searched 15 April 2013). Selection Criteria Randomized or quasi-randomized trials in women with stress, urgency or mixed UI (based on symptoms, signs, or urodynamics). Data Collection and Analysis At least two independent review authors carried out trial screening, selection, risk of bias assessment and data abstraction. Trials were subgrouped by UI diagnosis. The quality of evidence was assessed by adopting the (GRADE) approach. Results Twenty-one trials (1281 women) were included; 18 trials (1051 women) contributed data to the meta-analysis. In women with stress UI, there was high quality evidence that PFMT is associated with cure (RR 8.38; 95% CI 3.68 to 19.07) and moderate quality evidence of cure or improvement (RR 17.33; 95% CI 4.31 to 69.64). In women with any type of UI, there was also moderate quality evidence that PFMT is associated with cure (RR 5.5; 95% CI 2.87–10.52), or cure and improvement (RR 2.39; 95% CI 1.64–3.47). Conclusions The addition of seven new trials did not change the essential findings of the earlier version of this review. In this iteration, using the GRADE quality criteria strengthened the recommendations for PFMT and a wider range of secondary outcomes (also generally in favor of PFMT) were reported.
Resumo:
We present an imaging technique for the 3D-form metrology of optical surfaces. It is based on the optical absorption in fluids situated between the surface and a reference. An improved setup with a bi-chromatic light source is fundamental to obtain reliable topographic maps. It is able to measure any surface finish (rough or polished), form and slope and independently of scale. We present results focused on flat and spherical optical surfaces, arrays of lenses and with different surface finish (rough-polished). We achieve form accuracies from several nanometers to sub-lambda for sag departures from tens to hundred of microns. Therefore, it seems suitable for the quality control in the production of precision aspheric, freeform lenses and other complex shapes on transparent substrates, independently of the surface finish.
Resumo:
Background Pelvic floor muscle training (PFMT) is a commonly used physical therapy for women with urinary incontinence (UI). Objectives To determine the effects of PFMT for women with UI in comparison to no treatment, placebo or other inactive control treatments. Search Methods Cochrane Incontinence Group Specialized Register, (searched 15 April 2013). Selection Criteria Randomized or quasi-randomized trials in women with stress, urgency or mixed UI (based on symptoms, signs, or urodynamics). Data Collection and Analysis At least two independent review authors carried out trial screening, selection, risk of bias assessment and data abstraction. Trials were subgrouped by UI diagnosis. The quality of evidence was assessed by adopting the (GRADE) approach. Results Twenty-one trials (1281 women) were included; 18 trials (1051 women) contributed data to the meta-analysis. In women with stress UI, there was high quality evidence that PFMT is associated with cure (RR 8.38; 95% CI 3.68 to 19.07) and moderate quality evidence of cure or improvement (RR 17.33; 95% CI 4.31 to 69.64). In women with any type of UI, there was also moderate quality evidence that PFMT is associated with cure (RR 5.5; 95% CI 2.87–10.52), or cure and improvement (RR 2.39; 95% CI 1.64–3.47). Conclusions The addition of seven new trials did not change the essential findings of the earlier version of this review. In this iteration, using the GRADE quality criteria strengthened the recommendations for PFMT and a wider range of secondary outcomes (also generally in favor of PFMT) were reported.
Resumo:
Interfacing materials with different intrinsic chemical-physical characteristics allows for the generation of a new system with multifunctional features. Here, this original concept is implemented for tailoring the functional properties of bi-dimensional black phosphorus (2D bP or phosphorene) and organic light-emitting transistors (OLETs). Phosphorene is highly reactive under atmospheric conditions and its small-area/lab-scale deposition techniques have hampered the introduction of this material in real-world applications so far. The protection of 2D bP against the oxygen by means of functionalization with alkane molecules and pyrene derivatives, showed long-term stability with respect to the bare 2D bP by avoiding remarkable oxidation up to 6 months, paving the way towards ultra-sensitive oxygen chemo-sensors. A new approach of deposition-precipitation heterogeneous reaction was developed to decorate 2D bP with Au nanoparticles (NP)s, obtaining a “stabilizer-free” that may broaden the possible applications of the 2D bP/Au NPs interface in catalysis and biodiagnostics. Finally, 2D bP was deposited by electrospray technique, obtaining oxidized-phosphorous flakes as wide as hundreds of µm2 and providing for the first time a phosphorous-based bidimensional system responsive to electromechanical stimuli. The second part of the thesis focuses on the study of organic heterostructures in ambipolar OLET devices, intriguing optoelectronic devices that couple the micro-scaled light-emission with electrical switching. Initially, an ambipolar single-layer OLET based on a multifunctional organic semiconductor, is presented. The bias-depending light-emission shifted within the transistor channel, as expected in well-balanced ambipolar OLETs. However, the emitted optical power of the single layer-based device was unsatisfactory. To improve optoelectronic performance of the device, a multilayer organic architecture based on hole-transporting semiconductor, emissive donor-acceptor blend and electron-transporting semiconductor was optimized. We showed that the introduction of a suitable electron-injecting layer at the interface between the electron-transporting and light-emission layers may enable a ≈ 2× improvement of efficiency at reduced applied bias.
Resumo:
The GRAIN detector is part of the SAND Near Detector of the DUNE neutrino experiment. A new imaging technique involving the collection of the scintillation light will be used in order to reconstruct images of particle tracks in the GRAIN detector. Silicon photomultiplier (SiPM) matrices will be used as photosensors for collecting the scintillation light emitted at 127 nm by liquid argon. The readout of SiPM matrices inside the liquid argon requires the use of a multi-channel mixed-signal ASIC, while the back-end electronics will be implemented in FPGAs outside the cryogenic environment. The ALCOR (A Low-power Circuit for Optical sensor Readout) ASIC, developed by Torino division of INFN, is under study, since it is optimized to readout SiPMs at cryogenic temperatures. I took part in the realization of a demonstrator of the imaging system, which consists of a SiPM matrix connected to a custom circuit board, on which an ALCOR ASIC is mounted. The board communicates with an FPGA. The first step of the present project that I have accomplished was the development of an emulator for the ALCOR ASIC. This emulator allowed me to verify the correct functioning of the initial firmware before the real ASIC itself was available. I programmed the emulator using VHDL and I also developed test benches in order to test its correct working. Furthermore, I developed portions of the DAQ software, which I used for the acquisition of data and the slow control of the ASICs. In addition, I made some parts of the DAQ firmware for the FPGAs. Finally, I tested the complete SiPMs readout system at both room and cryogenic temperature in order to ensure its full functionality.
Resumo:
The control of energy homeostasis relies on robust neuronal circuits that regulate food intake and energy expenditure. Although the physiology of these circuits is well understood, the molecular and cellular response of this program to chronic diseases is still largely unclear. Hypothalamic inflammation has emerged as a major driver of energy homeostasis dysfunction in both obesity and anorexia. Importantly, this inflammation disrupts the action of metabolic signals promoting anabolism or supporting catabolism. In this review, we address the evidence that favors hypothalamic inflammation as a factor that resets energy homeostasis in pathological states.
Resumo:
Paraquat is a fast acting nonselective contact herbicide that is extensively used worldwide. However, the aqueous solubility and soil sorption of this compound can cause problems of toxicity in nontarget organisms. This work investigates the preparation and characterization of nanoparticles composed of chitosan and sodium tripolyphosphate (TPP) to produce an efficient herbicidal formulation that was less toxic and could be used for safer control of weeds in agriculture. The toxicities of the formulations were evaluated using cell culture viability assays and the Allium cepa chromosome aberration test. The herbicidal activity was investigated in cultivations of maize (Zea mays) and mustard (Brassica sp.), and soil sorption of the nanoencapsulated herbicide was measured. The efficiency association of paraquat with the nanoparticles was 62.6 ± 0.7%. Encapsulation of the herbicide resulted in changes in its diffusion and release as well as its sorption by soil. Cytotoxicity and genotoxicity assays showed that the nanoencapsulated herbicide was less toxic than the pure compound, indicating its potential to control weeds while at the same time reducing environmental impacts. Measurements of herbicidal activity showed that the effectiveness of paraquat was preserved after encapsulation. It was concluded that the encapsulation of paraquat in nanoparticles can provide a useful means of reducing adverse impacts on human health and the environment, and that the formulation therefore has potential for use in agriculture.
Resumo:
The maintenance of glucose homeostasis is complex and involves, besides the secretion and action of insulin and glucagon, a hormonal and neural mechanism, regulating the rate of gastric emptying. This mechanism depends on extrinsic and intrinsic factors. Glucagon-like peptide-1 secretion regulates the speed of gastric emptying, contributing to the control of postprandial glycemia. The pharmacodynamic characteristics of various agents of this class can explain the effects more relevant in fasting or postprandial glucose, and can thus guide the individualized treatment, according to the clinical and pathophysiological features of each patient.
Resumo:
To evaluate the use of optical and nonoptical aids during reading and writing activities in individuals with acquired low vision. This study was performed using descriptive and cross-sectional surveys. The data collection instrument was created with structured questions that were developed from an exploratory study and a previous test based on interviews, and it evaluated the following variables: personal characteristics, use of optical and nonoptical aids, and activities that required the use of optical and nonoptical aids. The study population included 30 subjects with acquired low vision and visual acuities of 20/200-20/400. Most subjects reported the use of some optical aids (60.0%). Of these 60.0%, the majority (83.3%) cited spectacles as the most widely used optical aid. The majority (63.3%) of subjects also reported the use of nonoptical aids, the most frequent ones being letter magnification (68.4%), followed by bringing the objects closer to the eyes (57.8%). Subjects often used more than one nonoptical aid. The majority of participants reported the use of optical and nonoptical aids during reading activities, highlighting the use of spectacles, magnifying glasses, and letter magnification; however, even after the use of these aids, we found that the subjects often needed to read the text more than once to understand it. During writing activities, all subjects reported the use of optical aids, while most stated that they did not use nonoptical aids for such activities.