933 resultados para Operator Error
Resumo:
Abstract I argue for the following claims: [1] all uses of I (the word ‘I’ or thought-element I) are absolutely immune to error through misidentification relative to I. [2] no genuine use of I can fail to refer. Nevertheless [3] I isn’t univocal: it doesn’t always refer to the same thing, or kind of thing, even in the thought or speech of a single person. This is so even though [4] I always refers to its user, the subject of experience who speaks or thinks, and although [5] if I’m thinking about something specifically as myself, I can’t fail to be thinking of myself, and although [6] a genuine understanding use of I always involves the subject thinking of itself as itself, whatever else it does or doesn’t involve, and although [7] if I take myself to be thinking about myself, then I am thinking about myself.
Resumo:
The need for consistent assimilation of satellite measurements for numerical weather prediction led operational meteorological centers to assimilate satellite radiances directly using variational data assimilation systems. More recently there has been a renewed interest in assimilating satellite retrievals (e.g., to avoid the use of relatively complicated radiative transfer models as observation operators for data assimilation). The aim of this paper is to provide a rigorous and comprehensive discussion of the conditions for the equivalence between radiance and retrieval assimilation. It is shown that two requirements need to be satisfied for the equivalence: (i) the radiance observation operator needs to be approximately linear in a region of the state space centered at the retrieval and with a radius of the order of the retrieval error; and (ii) any prior information used to constrain the retrieval should not underrepresent the variability of the state, so as to retain the information content of the measurements. Both these requirements can be tested in practice. When these requirements are met, retrievals can be transformed so as to represent only the portion of the state that is well constrained by the original radiance measurements and can be assimilated in a consistent and optimal way, by means of an appropriate observation operator and a unit matrix as error covariance. Finally, specific cases when retrieval assimilation can be more advantageous (e.g., when the estimate sought by the operational assimilation system depends on the first guess) are discussed.
Resumo:
Assimilation of temperature observations into an ocean model near the equator often results in a dynamically unbalanced state with unrealistic overturning circulations. The way in which these circulations arise from systematic errors in the model or its forcing is discussed. A scheme is proposed, based on the theory of state augmentation, which uses the departures of the model state from the observations to update slowly evolving bias fields. Results are summarized from an experiment applying this bias correction scheme to an ocean general circulation model. They show that the method produces more balanced analyses and a better fit to the temperature observations.
Resumo:
Data assimilation aims to incorporate measured observations into a dynamical system model in order to produce accurate estimates of all the current (and future) state variables of the system. The optimal estimates minimize a variational principle and can be found using adjoint methods. The model equations are treated as strong constraints on the problem. In reality, the model does not represent the system behaviour exactly and errors arise due to lack of resolution and inaccuracies in physical parameters, boundary conditions and forcing terms. A technique for estimating systematic and time-correlated errors as part of the variational assimilation procedure is described here. The modified method determines a correction term that compensates for model error and leads to improved predictions of the system states. The technique is illustrated in two test cases. Applications to the 1-D nonlinear shallow water equations demonstrate the effectiveness of the new procedure.
Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the $p$-version
Resumo:
Plane wave discontinuous Galerkin (PWDG) methods are a class of Trefftz-type methods for the spatial discretization of boundary value problems for the Helmholtz operator $-\Delta-\omega^2$, $\omega>0$. They include the so-called ultra weak variational formulation from [O. Cessenat and B. Després, SIAM J. Numer. Anal., 35 (1998), pp. 255–299]. This paper is concerned with the a priori convergence analysis of PWDG in the case of $p$-refinement, that is, the study of the asymptotic behavior of relevant error norms as the number of plane wave directions in the local trial spaces is increased. For convex domains in two space dimensions, we derive convergence rates, employing mesh skeleton-based norms, duality techniques from [P. Monk and D. Wang, Comput. Methods Appl. Mech. Engrg., 175 (1999), pp. 121–136], and plane wave approximation theory.
Resumo:
Vekua operators map harmonic functions defined on domain in \mathbb R2R2 to solutions of elliptic partial differential equations on the same domain and vice versa. In this paper, following the original work of I. Vekua (Ilja Vekua (1907–1977), Soviet-Georgian mathematician), we define Vekua operators in the case of the Helmholtz equation in a completely explicit fashion, in any space dimension N ≥ 2. We prove (i) that they actually transform harmonic functions and Helmholtz solutions into each other; (ii) that they are inverse to each other; and (iii) that they are continuous in any Sobolev norm in star-shaped Lipschitz domains. Finally, we define and compute the generalized harmonic polynomials as the Vekua transforms of harmonic polynomials. These results are instrumental in proving approximation estimates for solutions of the Helmholtz equation in spaces of circular, spherical, and plane waves.