977 resultados para Operation analysis
Resumo:
Are you ready for a tender project? – Analysis of organisational project management maturity in the Austrian- Hungarian border region. Since the 1990s the European Union has paid more and more attention to subsidising cross-border development. It is understandable that different funding from proposal sources is particularly important for the border area, especially to those of utmost importance that support co-operation and rural development. Therefore, they could become a driving force for development. The authors’ research analyses the organisational project management maturity of the projects implemented in the frame of the Austria-Hungary Cross-border Cooperation Programme 2007-2013 (AT-HU). Analysing this kind of organisation is an important issue, since the new call for proposals are open in 2016 and the results of this study may provide a self-evaluation opportunity to organisations that need to know if they are ready or mature enough for a new tender project. The aim of this study was twofold. First of all, those indicators that could be used to analyse the project management maturity of implementing organisations in the AT-HU programme were identified. Based on the empirical research these are the project experience accumulated by the organisation, the internal processes operating at the institution and the professional background. Secondly, factors that can affect this project management maturity were explored and we determined five influencing area: the organisational structure, culture, project managers motivation and the typical and important competences.
Resumo:
Companies face new challenges almost every day. In order to stay competitive, it is important that companies strive for continuous development and improvement. By describing companies through their processes it is possible to get a clear overview of the entire operation, which can contribute, to a well-established overall understanding of the company. This is a case study based on Stort AB which is a small logistics company specialized in international transportation and logistics solutions. The purpose of this study is to perform value stream mapping in order to create a more efficient production process and propose possible improvements in order to reduce processing time. After performing value stream mapping, data envelopment analysis is used to calculate how lean Stort AB is today and how lean the company can become by implementing the proposed improvements. The results show that the production process can improve efficiency by minimizing waste produced by a bad workplace layout and over-processing. The authors suggested solution is to introduce standardized processes and invest in technical instruments in order to automate the process to reduce process time. According to data envelopment analysis the business is 41 percent lean at present and may soon become 55 percent lean and finally reach an optimum 100 percent lean mode if the process is automated.
Resumo:
Communication can be seen as one of the most important features to manage conflicts and the stress of the work teams that operate in environments with strong pressure, complex operations and continuous risk, which are aspects that characterize a high reliability organization. This article aims to highlight the importance of communication in high-reliability organizations, having as object of study the accidents and incidents in civil aviation area. It refers to a qualitative research, outlined by documental analysis based on investigations conducted by the Federal Aviation Administration and the Center of Investigation and Prevention of Aeronautical Accidents. The results point out that human errors account for 60 to 80 percent of accidents and incidents. Most of these occurrences are attributed to miscommunication between the professionals involved with the air and ground operation, such as pilots, crewmembers and maintenance staff, and flight controllers. Inappropriate tone of voice usage, difficulties to understand different accents between the issuer and the receiver or even difficulty to perceive red flags between the lines of verbal and non-verbal communication, are elements that contribute to the fata of understanding between people involved in the operation. As a research limitation this present research pointed out a lack of a special category of "interpersonal communications failures" in the official agency reports. So, the researchers must take the conceptual definition of "social ability", communication implied, to classify behaviors and communication matters accordingly. Other research finding indicates that communication is superficially approached in the contents of air operations courses what could mitigate the lack of communications skills as a social ability. Part of the research findings refers to the contents of communication skills development into the program to train professional involved in air flight and ground operations. So, it is expected that this present article gives an appropriate highlight towards the improvement of flight operations training programs. Developing communication skills among work teams in high reliability organizations can contribute to mitigate stress, accidents and incidents in Civil Aviation Field. The original contribution of this article is the proposal of the main contents that should be developed in a Communication Skills Training Program, specially addressed to Civil Aviation operations.
Resumo:
This analysis estimates several economic benefits derived from national implementation of the National Oceanic and Atmospheric Administration’s Physical Oceanographic Real-Time System (PORTS®) at the 175 largest ports in the United States. Significant benefits were observed owing to: (1) lower commercial marine accident rates and resultant reductions in morbidity, mortality and property damage; (2) reduced pollution remediation costs; and, (3) increased productivity associated with operation of more fully loaded commercial vessels. Evidence also suggested additional benefits from heightened commercial and recreational fish catch and diminished recreational boating accidents. Annual gross benefits from 58 current PORTS® locations exceeded $217 million with an addition $83 million possible if installed at the largest remaining 117 ports in the United States. Over the ten-year economic life of PORTS® instruments, the present value for installation at all 175 ports could approach $2.5 billion.
Resumo:
Resource management policies are frequently designed and planned to target specific needs of particular sectors, without taking into account the interests of other sectors who share the same resources. In a climate of resource depletion, population growth, increase in energy demand and climate change awareness, it is of great importance to promote the assessment of intersectoral linkages and, by doing so, understand their effects and implications. This need is further augmented when common use of resources might not be solely relevant at national level, but also when the distribution of resources ranges over different nations. This dissertation focuses on the study of the energy systems of five south eastern European countries, which share the Sava River Basin, using a water-food(agriculture)-energy nexus approach. In the case of the electricity generation sector, the use of water is essential for the integrity of the energy systems, as the electricity production in the riparian countries relies on two major technologies dependent on water resources: hydro and thermal power plants. For example, in 2012, an average of 37% of the electricity production in the SRB countries was generated by hydropower and 61% in thermal power plants. Focusing on the SRB, in terms of existing installed capacities, the basin accommodates close to a tenth of all hydropower capacity while providing water for cooling to 42% of the net capacity of thermal power currently in operation in the basin. This energy-oriented nexus study explores the dependency on the basin’s water resources of the energy systems in the region for the period between 2015 and 2030. To do so, a multi-country electricity model was developed to provide a quantification ground to the analysis, using the open-source software modelling tool OSeMOSYS. Three main areas are subject to analysis: first, the impact of energy efficiency and renewable energy strategies in the electricity generation mix; secondly, the potential impacts of climate change under a moderate climate change projection scenario; and finally, deriving from the latter point, the cumulative impact of an increase in water demand in the agriculture sector, for irrigation. Additionally, electricity trade dynamics are compared across the different scenarios under scrutiny, as an effort to investigate the implications of the aforementioned factors in the electricity markets in the region.
Resumo:
Valveless pulsejets are extremely simple aircraft engines; essentially cleverly designed tubes with no moving parts. These engines utilize pressure waves, instead of machinery, for thrust generation, and have demonstrated thrust-to-weight ratios over 8 and thrust specific fuel consumption levels below 1 lbm/lbf-hr – performance levels that can rival many gas turbines. Despite their simplicity and competitive performance, they have not seen widespread application due to extremely high noise and vibration levels, which have persisted as an unresolved challenge primarily due to a lack of fundamental insight into the operation of these engines. This thesis develops two theories for pulsejet operation (both based on electro-acoustic analogies) that predict measurements better than any previous theory reported in the literature, and then uses them to devise and experimentally validate effective noise reduction strategies. The first theory analyzes valveless pulsejets as acoustic ducts with axially varying area and temperature. An electro-acoustic analogy is used to calculate longitudinal mode frequencies and shapes for prescribed area and temperature distributions inside an engine. Predicted operating frequencies match experimental values to within 6% with the use of appropriate end corrections. Mode shapes are predicted and used to develop strategies for suppressing higher modes that are responsible for much of the perceived noise. These strategies are verified experimentally and via comparison to existing models/data for valveless pulsejets in the literature. The second theory analyzes valveless pulsejets as acoustic systems/circuits in which each engine component is represented by an acoustic impedance. These are assembled to form an equivalent circuit for the engine that is solved to find the frequency response. The theory is used to predict the behavior of two interacting pulsejet engines. It is validated via comparison to experiment and data in the literature. The technique is then used to develop and experimentally verify a method for operating two engines in anti-phase without interfering with thrust production. Finally, Helmholtz resonators are used to suppress higher order modes that inhibit noise suppression via anti-phasing. Experiments show that the acoustic output of two resonator-equipped pulsejets operating in anti-phase is 9 dBA less than the acoustic output of a single pulsejet.
Resumo:
The Oporto Airport located in the northern region in Porto city is crucial because is the only one located in the northern region. This airport had an increasing in number of passengers, sales revenue and accumulated investment during the last two decades, principally after the introduction and the operation of the Low Cost Companies since 2004 to the present. In order to determine if the last changes had an impact in the competitiveness of this airport, the main aims is to analise the evolution of values of the technical efficiency and equate the results before and after the introduction of the LCCs in this airport. The methodology uses the Data Envelopment Analysis. Results show that the Oporto Airport efficiency increases highly after the introduction of LCCs since 2004. The main conclusions suggest the importance of the introduction of LCCs in the increasing efficiency of the Oporto Airport and the potential relation with tourism development in this region, but more strong studies are needed.
Resumo:
The ability to predict the properties of magnetic materials in a device is essential to ensuring the correct operation and optimization of the design as well as the device behavior over a wide range of input frequencies. Typically, development and simulation of wide-bandwidth models requires detailed, physics-based simulations that utilize significant computational resources. Balancing the trade-offs between model computational overhead and accuracy can be cumbersome, especially when the nonlinear effects of saturation and hysteresis are included in the model. This study focuses on the development of a system for analyzing magnetic devices in cases where model accuracy and computational intensity must be carefully and easily balanced by the engineer. A method for adjusting model complexity and corresponding level of detail while incorporating the nonlinear effects of hysteresis is presented that builds upon recent work in loss analysis and magnetic equivalent circuit (MEC) modeling. The approach utilizes MEC models in conjunction with linearization and model-order reduction techniques to process magnetic devices based on geometry and core type. The validity of steady-state permeability approximations is also discussed.
Resumo:
Tese submetida à Universidade de Lisboa, Instituto Superior Técnico e aprovada em provas públicas para a obtenção do Grau de Doutor em Sistemas Sustentáveis de Energia.
Resumo:
Evaluation of the quality of the environment is essential for human wellness as pollutants in trace amounts can cause serious health problem. Nitrosamines are a group of compounds that are considered potential carcinogens and can be found in drinking water (as disinfection byproducts), foods, beverages and cosmetics. To monitor the level of these compounds to minimize daily intakes, fast and reliable analytical techniques are required. As these compounds are relatively highly polar, extraction and enrichment from environmental samples (aqueous) are challenging. Also, the trend of analytical techniques toward the reduction of sample size and minimization of organic solvent use demands new methods of analysis. In light of fulfilling these requirements, a new method of online preconcentration tailored to an electrokinetic chromatography is introduced. In this method, electroosmotic flow (EOF) was suppressed to increase the interaction time between analyte and micellar phase, therefore the only force to mobilize the neutral analytes is the interaction of analyte with moving micelles. In absence of EOF, polarity of applied potential was switched (negative or positive) to force (anionic or cationic) micelles to move toward the detector. To avoid the excessive band broadening due to longer analysis time caused by slow moving micelles, auxiliary pressure was introduced to boost the micelle movement toward the detector using an in house designed and built apparatus. Applying the external auxiliary pressure significantly reduced the analysis times without compromising separation efficiency. Parameters, such as type of surfactants, composition of background electrolyte (BGE), type of capillary, matrix effect, organic modifiers, etc., were evaluated in optimization of the method. The enrichment factors for targeted analytes were impressive, particularly; cationic surfactants were shown to be suitable for analysis of nitrosamines due to their ability to act as hydrogen bond donors. Ammonium perfluorooctanoate (APFO) also showed remarkable results in term of peak shapes and number of theoretical plates. It was shown that the separation results were best when a high conductivity sample was paired with a BGE of lower conductivity. Using higher surfactant concentrations (up to 200 mM SDS) than usual (50 mM SDS) for micellar electrokinetic chromatography (MEKC) improved the sweeping. A new method for micro-extraction and enrichment of highly polar neutral analytes (N-Nitrosamines in particular) based on three-phase drop micro-extraction was introduced and its performance studied. In this method, a new device using some easy-to-find components was fabricated and its operation and application demonstrated. Compared to conventional extraction methods (liquid-liquid extraction), consumption of organic solvents and operation times were significantly lower.
Resumo:
The concept of Mass Customization (MC) - producing customised goods for a mass market - has received considerable attention in the research literature in recent years. However the literature is limited in providing an understanding of the content of MC strategies (the organizational structures, process technologies, etc., that are best in a particular environment) and the process of MC strategies (the sub-strategy that an enterprise should select and how they should go about implementing an MC strategy). In this paper six published classification schemes of relevance to Mass Customization are reviewed. The classification schemes are applied to five case studies of enterprises operating in an MC environment. The limitations of the schemes are analysed and their failure to distinguish key characteristics is highlighted. Analysis of the findings leads to the development of a taxonomy of operational modes for MC. Five fundamental modes of operation for Mass Customization are identified. These modes are described and justified and their application is illustrated by contrasting the information requirements of two modes. The potential of these modes to provide the foundations for detailed configurations models is discussed.
Resumo:
Developments in theory and experiment have raised the prospect of an electronic technology based on the discrete nature of electron tunnelling through a potential barrier. This thesis deals with novel design and analysis tools developed to study such systems. Possible devices include those constructed from ultrasmall normal tunnelling junctions. These exhibit charging effects including the Coulomb blockade and correlated electron tunnelling. They allow transistor-like control of the transfer of single carriers, and present the prospect of digital systems operating at the information theoretic limit. As such, they are often referred to as single electronic devices. Single electronic devices exhibit self quantising logic and good structural tolerance. Their speed, immunity to thermal noise, and operating voltage all scale beneficially with junction capacitance. For ultrasmall junctions the possibility of room temperature operation at sub picosecond timescales seems feasible. However, they are sensitive to external charge; whether from trapping-detrapping events, externally gated potentials, or system cross-talk. Quantum effects such as charge macroscopic quantum tunnelling may degrade performance. Finally, any practical system will be complex and spatially extended (amplifying the above problems), and prone to fabrication imperfection. This summarises why new design and analysis tools are required. Simulation tools are developed, concentrating on the basic building blocks of single electronic systems; the tunnelling junction array and gated turnstile device. Three main points are considered: the best method of estimating capacitance values from physical system geometry; the mathematical model which should represent electron tunnelling based on this data; application of this model to the investigation of single electronic systems. (DXN004909)
Resumo:
Wind energy is one of the most promising and fast growing sector of energy production. Wind is ecologically friendly and relatively cheap energy resource available for development in practically all corners of the world (where only the wind blows). Today wind power gained broad development in the Scandinavian countries. Three important challenges concerning sustainable development, i.e. energy security, climate change and energy access make a compelling case for large-scale utilization of wind energy. In Finland, according to the climate and energy strategy, accepted in 2008, the total consumption of electricity generated by means of wind farms by 2020, should reach 6 - 7% of total consumption in the country [1]. The main challenges associated with wind energy production are harsh operational conditions that often accompany the turbine operation in the climatic conditions of the north and poor accessibility for maintenance and service. One of the major problems that require a solution is the icing of turbine structures. Icing reduces the performance of wind turbines, which in the conditions of a long cold period, can significantly affect the reliability of power supply. In order to predict and control power performance, the process of ice accretion has to be carefully tracked. There are two ways to detect icing – directly or indirectly. The first way applies to the special ice detection instruments. The second one is using indirect characteristics of turbine performance. One of such indirect methods for ice detection and power loss estimation has been proposed and used in this paper. The results were compared to the results directly gained from the ice sensors. The data used was measured in Muukko wind farm, southeast Finland during a project 'Wind power in cold climate and complex terrain'. The project was carried out in 9/2013 - 8/2015 with the partners Lappeenranta university of technology, Alstom renovables España S.L., TuuliMuukko, and TuuliSaimaa.
Resumo:
Part 17: Risk Analysis
Resumo:
© IMechE 2014. Controlled auto-ignition, also known as homogeneous charge compression ignition, has been the subject of extensive research because of their ability to provide simultaneous reductions in fuel consumption and NOx emissions from a gasoline engine. However, due to its limited operation range, switching between controlled auto-ignition and spark ignition combustion is needed to cover the complete operating range of a gasoline engine for passenger car applications. Previous research has shown that the spark ignition -controlled auto-ignition hybrid combustion (SCHC) has the potential to control the ignition timing and heat release process during the mode transition operations. However, it was found that the SCHC is often characterized with large cycle-to-cycle variations. The cyclic variations in the in-cylinder pressure are particularly noticeable in terms of both their peak values and timings while the coefficient of variation in the indicated mean effective pressure is much less. In this work, the cyclic variations in SCHC operations were analyzed by means of in-cylinder pressure and heat release analysis in a single-cylinder gasoline engine equipped with Variable Valve Actuation (VVA) systems. First, characteristics of the in-cylinder pressure traces during the spark ignition-controlled auto-ignition hybrid combustion operation are presented and their heat release processes analyzed. In order to clarify the contribution to heat release and cyclic variation in SCHC, a new method is introduced to identify the occurrence of auto-ignition combustion and its subsequent heat release process. Based on the new method developed, the characteristics of cyclic variations in the maximum rate of pressure rise and different stages of heat release process have been analyzed and discussed.