956 resultados para OLIGONUCLEOTIDE ARRAYS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using electrochemical deposition, Cu nanowire arrays have been successfully fabricated by home-made polycarbonate ion-track templates. The diameters were well controlled by etching time of templates. The minimum diameter is 15 nm. The morphologies and structures were analyzed by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The wires prefer [1 1 0] growth direction due to H ions absorption. The optical properties of Cu nanowire arrays are studied by an ultraviolet/visible/near-infrared spectrophotometer. Two extinction peaks were observed in spectra. The optical mechanism is discussed based on surface plasmon resonance

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Well-aligned TiO2/Ti nanotube arrays were electrochemically formed in a HF solution for different anodization times. Field emission scanning electron microscopy (FE-SEM) images reveal that anodization time had a great influence on the morphology of TiO2/Ti nanotube arrays. The composition of resulting nanotubes was analyzed by X-ray photoelectron spectroscopy (XPS). Field emission properties of the prepared samples with different morphologies were investigated by the Fowler-Nordheim (F-N) theory. The results indicate that the morphology can affect field emission behaviors. TiO2/Ti nanotube arrays with clear, uniform, and short nanotubes display moderate field emission properties, and have the better turn-on field of 4.6 V/mu m and good field emission stability. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multi-channel gated integrator and PXI based data acquisition system have been developed for nuclear detector arrays with hundreds of detector units. The multi-channel gated integrator can be controlled by a programmable Cl controller. The PXI-DAQ system consists of NI PXI-1033 chassis with several PXI-DAQ cards. The system software has a user-friendly GUI which is written in C language using LabWindows/CVI under Windows XP operating system. The performance of the PXI-DAQ system is very reliable and capable of handling event rate up to 40 kHz. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

City Univ Hong Kong

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An effective and facile method for the fabrication of a surface-enhanced Raman scattering (SERS)-active film with closely packed gold nanoparticle (AuNP) arrays is proposed by self-assembly of different sizes ( 16, 25, 40 and 70 nm) of AuNPs at a toluene/water interface with ethanol as the inducer. The as-prepared AuNP arrays exhibit efficient Raman scattering enhancement, and the enhancement factors estimated using p-aminothiophenol as a probe molecule range from 10(5) to 10(7).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new and facile method to prepare large-area silver-coated silicon nanowire arrays for surface-enhanced Raman spectroscopy (SERS)-based sensing is introduced. High-quality silicon nanowire arrays are prepared by a chemical etching method and used as a template for the generation of SERS-active silver-coated silicon nanowire arrays. The morphologies of the silicon nanowire arrays and the type of silver-plating solution are two key factors determining the magnitude of SERS signal enhancement and the sensitivity of detection; they are investigated in detail for the purpose of optimization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large-scale arrays consist of dendritic single-crystalline Ag/Pd alloy nanostructures are synthesized for the first time. A simple galvanic replacement reaction is introduced to grow these arrays directly on Ag substrates. The morphology of the products strongly depended on the reaction temperature and the concentration of H2PdCl4 solution. The mechanism of the formation of alloy and the dendritic morphology has been discussed. These alloy arrays exhibit high surface-enhanced Raman scattering (SERS) activity and may have potential applications in investigation of "in situ" Pd catalytic reactions using SERS. Moreover, electrocatalytic measurements suggest that the obtained dendritic Ag/Pd alloy nanostructures exhibit electrocatytic activity toward the oxidation of formic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalytic degradation of organic dye molecules has attracted extensive attention due to their high toxicity to water resources. In this paper, we propose a novel method for the fabrication of uniform silver-coated ZnO nanowire arrays. The degradation of typical dye molecule rhodamine 6G (R6G), as an example, is investigated in the presence of the as-prepared silver-coated ZnO nanowire arrays. The experimental results show that such composite nanostructures exhibit high catalytic activity, and the reaction follows pseudo-first-order kinetics. Furthermore, these nanowire arrays are desirable SERS substrates for monitoring the catalytic degradation of dye molecules. Compared with traditional UV-visible spectroscopy, SERS technology can reflect more truly the catalytic degradation process occurring on the surface of the catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorescent oligonucleotide-stabilized Ag nanoclusters are demonstrated as novel and environmentally-friendly fluorescence probes for the determination of Hg2+ ions with a low detection limit and high selectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly ordered, vertically oriented TiO2 nanotube arrays were prepared by potentiostatic anodization of titanium on FTO-coated glass substrate and for the first time successfully applied in the fabrication of solid-state dye sensitized solar cells (SSDSCs), giving a power conversion efficiency of 1.67% measured under an irradiation of air mass 1.5 global (AM 1.5 G) full sunlight. Furthermore, 3.8% efficiency was reached with a 2.8 mu m thin TiO2 nanotube array film based on a metal free organic dye using ionic liquid electrolyte.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a radio frequency magnetron sputtering method for producing TiO2 shell coatings directly on the surface of ZnO nanorod arrays. ZnO nanorod arrays were firstly fabricated on transparent conducting oxide substrates by a hydrothermal route, and subsequently decorated with TiO2 by a plasma sputtering deposition process. The core/shell nanorods have single-crystal ZnO cores and anatase TiO2 shells. The shells are homogeneously coated onto the whole ZnO nanorods without thickness change. This approach enables us to tailor the thickness of the TiO2 shell for desired photovoltaic applications on a one-nanometer scale. The function of the TiO2 shell as a blocking layer for increasing charge separation and suppression of the surface recombination was tested in dye-sensitized solar cells. The enhanced photocurrent and open-circuit voltage gave rise to increased photovoltaic efficiency and decreased dark current, indicating successful functioning of the TiO2 shell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ZnO/TiO2 core/shell structure was formed through deposition of a TiO2 coating layer on the hydrothermally fabricated ZnO nanorod arrays through radio frequency magnetron sputtering. The effects of the TiO2 shell's characteristics on the current-voltage behaviors of the core/shell-based dye-sensitized solar cells (CS-DSSC) were investigated. As the rates of injection, transfer, and recombination of electrons of such CS-DSSC were affected significantly by the crystallization, morphology, and continuity of the TiO2 shells, the photovoltaic efficiency was accordingly varied remarkably. In addition, the efficiency was further improved by enhancing the surface area in the core/shell electrode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oligonucleotide from SARS virus was selected as a target molecule in the paper. The noncovalent complexes of ginsenosides with the target molecule were investigated by electrospray ionization mass spectrometry. The effects of experimental conditions were examined firstly on the formation of noncovalent complexes. Based on the optimized experimental conditions, the interaction of different ginsenosides with the target molecule was researched, finding that the interaction orders are relative with the structure of aglycons, the length and terminal sugar types of saccharide chains in the ginsenosides. There are certain rules for the interaction between the ginsenosides and DNA target molecule. For different type ginsenosides, the interaction intensity takes the orders 20-S-protopanaxatriol > 20-S-protopanaxadiol, and panaxatriol ginsenosides > panaxadiol ginsenosides. For the ginsenosides with the same type aglycone, tri-saccharide chain > di-saccharide chain > tetra-saccharide chain and single-saccharide chain > panaxatriol. For the ginsenosides with the same tetra-saccharide chain, the ginsenosides with smaller molecule masses > the ginsenosides with larger molecule masses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the implications of a pellet experiment,we have designed and implemented a low temperature(≤90℃) approach to generate native patterned,vertically aligned ZnO nanoarrys without any templates or catalysts.This simple,economic and spontaneous patterning process offers a promising avenue for overcoming several inherent limitations of the artificial manners[1].While the purity,orientation and electrical properties of the as prepared materials allow them to be applied in various fields.