1000 resultados para ODP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abundant serpentinite seamounts are found along the outer high of the Mariana forearc at the top of the inner slope of the trench. One of them, Conical Seamount, was drilled at Sites 778, 779, and 780 during Leg 125. The rocks recovered at Holes 779A and 780C, respectively, on the flanks and at the summit of the seamount, include moderately serpentinized depleted harzburgites and some dunites. These rocks exhibit evidence of resorption of the orthopyroxene, when present, and the local presence of very calcic-rich diopside in veins oblique to the main high-temperature foliation of the rock. The peridotites, initially well-foliated with locally poikiloblastic textures, show overprints of a two-stage deformation history: (1) a high-temperature (>1000°C), low-stress (0.02 GPa), homogeneous deformation that has led to the present Porphyroclastic textures displayed by the rocks and (2) heterogeneous ductile shearing at a much higher stress (0.05 GPa). This heterogeneous shearing probably describes a single tectonic event because it began at high temperatures, producing dynamic recrystallization of olivine in the shear zone, and ended at low temperatures in the stability field of chlorite and serpentine. In a few samples, olivine shows evidence of quasi-hydrostatic recrystallization at a very high temperature. Here, we propose that this recrystallization was related to fluid/magma percolation, a process that can also account for the resorption of the orthopyroxene and for the late crystallization of diopside veins in the rock. The impregnation by fluid or magma, development of the main high-temperature, low-stress deformation, and subsequent migration recrystallization of olivine probably occurred in a mantle fragment involved in the arc formation. In addition, this mantle has preserved structures that may have formed earlier in the oceanic lithosphere upon which the arc formed. Heterogeneous ductile shear zones in the peridotites may have developed during uplift. The "cold" deformation may have taken place during diapiric rise of hot mantle that underwent subsequent serpentinization or gliding along normal faults associated with the extension of the eastern margin of the forearc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Sites 1257-1261 recovered thick sections of Upper Cretaceous-Eocene oceanic sediments on Demerara Rise off the east coast of Surinam and French Guiana, South America. Paleomagnetic and rock magnetic measurements of ~800 minicores established a high-resolution composite magnetostratigraphy spanning most of the Maastrichtian-Eocene. Magnetic behavior during demagnetization varied among lithologies, but thermal demagnetization steps >200°C were generally successful in removing present-day normal polarity overprints and a downward overprint induced during the ODP coring process. Characteristic remanent magnetizations and associated polarity interpretations were generally assigned to directions observed at 200°-400°C, and the associated polarity interpretations were partially based on whether the characteristic direction was aligned or apparently opposite to the low-temperature "north-directed" overprint. Biostratigraphy and polarity patterns constrained assignment of polarity chrons. The composite sections have a complete polarity record of Chrons C18n (middle Eocene)-C34n (Late Cretaceous).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an attempt to determine the helium and neon isotopic composition of the lower oceanic crust, we report new noble gas measurements on 11 million year old gabbros from Ocean Drilling Program site 735B in the Indian Ocean. The nine whole rock samples analyzed came from 20 to 500 m depth below the seafloor. Helium contents vary from 3.3*10**-10 to 2.5*10**-7 ccSTP/g by crushing and from 5.4*10**-8 to 2.4*10**-7 ccSTP/g by melting. 3He/4He ratios vary between 2.2 and 8.6 Ra by crushing and between 2.9 and 8.2 by melting. The highest R/Ra ratios are similar to the mean mid-ocean ridge basalt (MORB) ratio of 8+/-1. The lower values are attributed to radiogenic helium from in situ alüha-particle production during uranium and thorium decay. Neon isotopic ratios are similar to atmospheric ratios, reflecting a significant seawater circulation in the upper 500 m of exposed crust at this site. MORB-like neon, with elevated 20Ne/22Ne and 21Ne/22Ne ratios, was found in some high temperature steps of heating experiments, but with very small anomalies compared to air. These first results from the lower oceanic crust indicate that subducted lower oceanic crust has an atmospheric 20Ne/22Ne ratio. Most of this neon must be removed during the subduction process, if the ocean crust is to be recirculated in the upper mantle, otherwise this atmospheric neon will overwhelm the upper mantle neon budget. Similarly, the high (U+Th)/3He ratio of these crustal gabbros will generate very radiogenic 4He/3He ratios on a 100 Ma time scale, so lower oceanic crust cannot be recycled into either MORB or oceanic island basalt without some form of processing.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fact that the natural remanent magnetization (NRM) intensity of mid-oceanic-ridge basalt (MORB) samples shows systematic variations as a function of age has long been recognized: maximum as well as average intensities are generally high for very young samples, falling off rather rapidly to less than half the recent values in samples between 10 and 30 Ma, whereupon they slowly rise in the early Tertiary and Cretaceous to values that approach those of the very young samples. NRM intensities measured in this study follow the same trends as those observed in previous publications. In this study, we take a statistical approach and examine whether this pattern can be explained by variations in one or more of all previously proposed mechanisms: chemical composition of the magnetic minerals, abundance of these magnetization carriers, vectorial superposition of parallel or antiparallel components of magnetization, magnetic grain or domain size patterns, low-temperature oxidation to titanomaghemite, or geomagnetic field behavior. We find that the samples do not show any compositional, petrological, rock-magnetic, or paleomagnetic patterns that can explain the trends. Geomagnetic field intensity is the only effect that cannot be directly tested on the same samples, but it shows a similar pattern as our measured NRM intensities. We therefore conclude that the geomagnetic field strength was, on-average, significantly greater during the Cretaceous than during the Oligocene and Miocene.

Relevância:

20.00% 20.00%

Publicador: