911 resultados para Null Hypothesis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of the peroxisome proliferator-activated receptor (PPAR)-alpha increases lipid catabolism and lowers the concentration of circulating lipid, but its role in the control of glucose metabolism is not as clearly established. Here we compared PPARalpha knockout mice with wild type and confirmed that the former developed hypoglycemia during fasting. This was associated with only a slight increase in insulin sensitivity but a dramatic increase in whole-body and adipose tissue glucose use rates in the fasting state. The white sc and visceral fat depots were larger due to an increase in the size and number of adipocytes, and their level of GLUT4 expression was higher and no longer regulated by the fed-to-fast transition. To evaluate whether these adipocyte deregulations were secondary to the absence of PPARalpha from liver, we reexpresssed this transcription factor in the liver of knockout mice using recombinant adenoviruses. Whereas more than 90% of the hepatocytes were infected and PPARalpha expression was restored to normal levels, the whole-body glucose use rate remained elevated. Next, to evaluate whether brain PPARalpha could affect glucose homeostasis, we activated brain PPARalpha in wild-type mice by infusing WY14643 into the lateral ventricle and showed that whole-body glucose use was reduced. Hence, our data show that PPARalpha is involved in the regulation of glucose homeostasis, insulin sensitivity, fat accumulation, and adipose tissue glucose use by a mechanism that does not require PPARalpha expression in the liver. By contrast, activation of PPARalpha in the brain stimulates peripheral glucose use. This suggests that the alteration in adipocyte glucose metabolism in the knockout mice may result from the absence of PPARalpha in the brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A role for glucose in the control of feeding has been proposed, but its precise physiological importance is unknown. Here, we evaluated feeding behavior in glut2-null mice, which express a transgenic glucose transporter in their beta-cells to rescue insulin secretion (ripglut1;glut2-/- mice). We showed that in the absence of GLUT2, daily food intake was increased and feeding initiation and termination following a fasting period were abnormal. This was accompanied by suppressed regulation of hypothalamic orexigenic and anorexigenic neuropeptides expression during the fast-to-refed transition. In these conditions, however, there was normal regulation of the circulating levels of insulin, leptin, or glucose but a loss of regulation of plasma ghrelin concentrations. To evaluate whether the abnormal feeding behavior was due to suppressed glucose sensing, we evaluated feeding in response to intraperitoneal or intracerebroventricular glucose or 2-deoxy-D-glucose injections. We showed that in GLUT2-null mice, feeding was no longer inhibited by glucose or activated by 2-deoxy-D-glucose injections and the regulation of hypothalamic neuropeptide expression by intracerebroventricular glucose administration was lost. Together, these data demonstrate that absence of GLUT2 suppressed the function of central glucose sensors, which control feeding probably by regulating the hypothalamic melanocortin pathway. Furthermore, inactivation of these glucose sensors causes overeating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidemiological and biochemical studies show that the sporadic forms of Alzheimer's disease (AD) are characterized by the following hallmarks: (a) An exponential increase with age; (b) Selective neuronal vulnerability; (c) Inverse cancer comorbidity. The present article appeals to these hallmarks to evaluate and contrast two competing models of AD: the amyloid hypothesis (a neuron-centric mechanism) and the Inverse Warburg hypothesis (a neuron-astrocytic mechanism). We show that these three hallmarks of AD conflict with the amyloid hypothesis, but are consistent with the Inverse Warburg hypothesis, a bioenergetic model which postulates that AD is the result of a cascade of three events-mitochondrial dysregulation, metabolic reprogramming (the Inverse Warburg effect), and natural selection. We also provide an explanation for the failures of the clinical trials based on amyloid immunization, and we propose a new class of therapeutic strategies consistent with the neuroenergetic selection model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the preceding article, we demonstrated that activation of the hepatoportal glucose sensor led to a paradoxical development of hypoglycemia that was associated with increased glucose utilization by a subset of tissues. In this study, we tested whether GLUT2 plays a role in the portal glucose-sensing system that is similar to its involvement in pancreatic beta-cells. Awake RIPGLUT1 x GLUT2-/- and control mice were infused with glucose through the portal (Po-) or the femoral (Fe-) vein for 3 h at a rate equivalent to the endogenous glucose production rate. Blood glucose and plasma insulin concentrations were continuously monitored. Glucose turnover, glycolysis, and glycogen synthesis rates were determined by the 3H-glucose infusion technique. We showed that portal glucose infusion in RIPGLUT1 x GLUT24-/- mice did not induce the hypoglycemia observed in control mice but, in contrast, led to a transient hyperglycemic state followed by a return to normoglycemia; this glycemic pattern was similar to that observed in control Fe-mice and RIPGLUT1 x GLUT2-/- Fe-mice. Plasma insulin profiles during the infusion period were similar in control and RIPGLUT1 x GLUT2-/- Po- and Fe-mice. The lack of hypoglycemia development in RIPGLUT1 x GLUT2-/- mice was not due to the absence of GLUT2 in the liver. Indeed, reexpression by transgenesis of this transporter in hepatocytes did not restore the development of hypoglycemia after initiating portal vein glucose infusion. In the absence of GLUT2, glucose turnover increased in Po-mice to the same extent as that in RIPGLUT1 x GLUT2-/- or control Fe-mice. Finally, co-infusion of somatostatin with glucose prevented development of hypoglycemia in control Po-mice, but it did not affect the glycemia or insulinemia of RIPGLUT1 x GLUT2-/- Po-mice. Together, our data demonstrate that GLUT2 is required for the function of the hepatoportal glucose sensor and that somatostatin could inhibit the glucose signal by interfering with GLUT2-expressing sensing units.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Connexin 40 (Cx40) is expressed by the renin-producing cells (RSCs) of the kidneys and the endothelial cells of blood vessels. Cx40 null mice (Cx40(-/-)) feature a much increased renin synthesis and secretion, which results in chronic hypertension, and also display an altered endothelium-dependent relaxation of the aorta because of reduced eNOS levels and nitric oxide production. To discriminate the effect of Cx40 in renin secretion and vascular signaling, we targeted Cx40 to either the RSCs or the endothelial cells of Cx40 null mice. When compared with Cx40(-/-) controls, the animals expressing Cx40 in RSCs were less hypertensive and featured reduced renin levels, still numerous RSCs outside the wall of the afferent arterioles. In contrast, mice expressing Cx40 in the endothelial cells were as hypertensive as Cx40(-/-) mice, in spite of control levels of Cx37 and eNOS. Our data show that blood pressure is improved by restoration of Cx40 expression in RSCs but not in endothelial cells, stressing the prominent role of renin in the mouse hypertension linked to loss of Cx40.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smad (Sma and Mad-related protein) 2/3 are downstream signaling molecules for TGF-β and myostatin (Mstn). Recently, Mstn was shown to induce reactive oxygen species (ROS) in skeletal muscle via canonical Smad3, nuclear factor-κB, and TNF-α pathway. However, mice lacking Smad3 display skeletal muscle atrophy due to increased Mstn levels. Hence, our aims were first to investigate whether Mstn induced muscle atrophy in Smad3(-/-) mice by increasing ROS and second to delineate Smad3-independent signaling mechanism for Mstn-induced ROS. Herein we show that Smad3(-/-) mice have increased ROS levels in skeletal muscle, and inactivation of Mstn in these mice partially ablates the oxidative stress. Furthermore, ROS induction by Mstn in Smad3(-/-) muscle was not via nuclear factor-κB (p65) signaling but due to activated p38, ERK MAPK signaling and enhanced IL-6 levels. Consequently, TNF-α, nicotinamide adenine dinucleotide phosphate oxidase, and xanthine oxidase levels were up-regulated, which led to an increase in ROS production in Smad3(-/-) skeletal muscle. The exaggerated ROS in the Smad3(-/-) muscle potentiated binding of C/EBP homology protein transcription factor to MuRF1 promoter, resulting in enhanced MuRF1 levels leading to muscle atrophy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose:Given the advances of gene therapy studies to cure RPE65-derived Leber Congenital Amaurosis (LCA) (clinical trials phase I) and the heterogeneity of the targeted patients both genetically and phenotypically, it is of prime importance to examine the rescue efficiency of gene transfer in different mutant contexts. Indeed, half of these mutations are missense mutations, leading to potential residual RPE65 activity. Consequently, we wanted to evaluate the effect on retinal activity and cone survival of lentivirus-mediated gene therapy in the R91W knock-in mouse model expressing the mutant Rpe65R91W gene (Samardzija et al. 2008), a mutation found in LCA patients. Notably we investigated whether if the therapeutic window is prolonged in comparison to null mutations. Methods:An HIV-1-derived lentiviral vector (LV) expressing either the GFP or the mouse Rpe65 cDNA under the control of a 0.8 kb fragment of the human Rpe65 promoter (R0.8) was produced by transient transfection of 293T cells. LV-R0.8-RPE65 or GFP was injected into 5-days-old (P5) or 1 month-old R91W mice. Functional rescue was assessed by ERG (1 and 4 months post-injection) and pupillary light response (PLR) recordings and cone survival by histological analysis. Results:Increased light sensitivity was detected by scotopic ERG in animals injected with LV-R0.8-RPE65 at both P5 and 1 month compared to GFP-treated animals or untreated mice. PLR was also improved in some eyes and histological analysis of cone markers showed that the density of cones reached the wild type level in the region of wt RPE65 delivery after treatment at P5. However, the rescue effect of the injection at 1 month was limited and attained 60% of the wild type level, but still more cones were observed in the treated area than in 1 month-old untreated Rpe65R91W mice. Conclusions:We were able to show that lentivirus-mediated Rpe65 gene transfer not only increases retinal activity of the Rpe65R91W mouse and survival of cones after treatment at P5 but also after treatment at 1 month. However even if the treatment at 1 month is more limited (60% of the wild type level) than treatment at P5, the amount of cone markers is increased compared to the proportion found at 1 month of age in untreated animals. This results contrast with the lack of cone rescue by treatment at 1 month of age in Rpe65-/- (Bemelmans et al, 2006). Thus patient suffering from R91W mutation might benefit from a prolonged therapeutic window.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary Mood disorders are among the most prevalent, psychosocial^ debilitating, chronic and relapsing forms of psychiatric illnesses. Despite considerable advances in their characterization, the heterogeneous nature of susceptibility factors and patient's symptoms could account for the lack of totally effective and remissive treatment. The neurobiological hypothesis of mood disorders etiology has evolved since the monoamine and neurotrophin theories and current evidence is pointing toward their integration in a broader polygenic epistatic model resulting in defective neuroplasticity of circuitries involved in emotion processing. Consequently, the unraveling of molecular underpinning pathways involved in neuronal plasticity, commonly altered among mood disorder syndromes and symptoms, should shed light on their etiology and provide new drug target. The transcription factor CREB has been critically involved in the long-lasting forms of neuronal plasticity and in the regulation of several mood disorders susceptibility genes. In addition, altered CREB activity has been associated with mood disorders pathophysiology and pharmacotherapy. Interestingly, the newly-identified protein CREB-regulated transcription coactivator 1 (CRTC1) was shown by previous studies in the laboratory to be a neuroactivity- dependent cAMP and calcium sensor, a potent activator of CREB-dependent transcription and involved in neuroplasticity mechanisms associated with long-term synaptic potentiation. Furthermore, the major mood disorder susceptibility gene Bdnf was suggested to be transcriptional regulated by CRTC1. Therefore, we aimed to investigate a role for CRTC1 in mood disorders by generating and characterizing a Crtcl deficient mouse model at the behavioral and molecular levels. Interestingly, their comprehensive characterization revealed a behavioral profile mirroring several major symptoms comorbid in mood disorders, including altered social interactions, aggressive behaviors, obesity, psychomotor retardation, increased emotional response to stress, decreased sexual drive and depression-like behaviors. To investigate the molecular mechanisms underlying these pathological behaviors and the implication of CRTC1 in the regulation of CREB-regulated genes in vivo, we also quantified transcript levels of several relevant CREB-regulated susceptibility genes in brain structures involved in the pathophysiology of mood disorders. Strikingly, we found the underexpression of primary components of the neurotrophin system: Bdnf and its cognate receptor TrkB, a marked decrease in the Nr4a family of transcription factors, implicated in neuroplasticity and associated with dopamine-related disorders, as well as in several other relevant CREB regulated genes. Moreover, neurochemical analysis revealed that Crtcl null mice presented alteration in prefrontal cortical monoamine turnover as well as in hippocampal and accumbal serotonin levels, similarly associated with mood disorders etiology and pharmacotherapy. Together, the present thesis supports the involvement of CRTC1 pathway hypofunction in the pathogenesis of mood disorders and specifically in pathological aggression, obesity and depression-related behavior comorbidities. Ultimately, CRTC1 may represent an interesting antidepressant, antiaggressive or mood stabilizer drug target candidate through the modulation of major CREB regulated susceptibility genes. Les troubles de l'humeur comptent parmi les maladies psychiatriques les plus prévalentes, psychosocialement débilitantes, chroniques et avec le plus grand risque de rechute. Malgré de considérable avancées dans leur caractérisation, la nature hétérogène des facteurs de susceptibilité et des symptômes présentés par les patients, semble justifier l'absence de traitement entraînant une rémission complète de la maladie. L'hypothèse de l'étiologie neurobiologique des troubles de l'humeur a évolué depuis la théorie des monoamines et des neurotrophines. Actuellement, elle tend à les englober dans un modèle polygénique épistatique induisant une déficience de la neuroplasticité des circuits impliqué dans la régulation des émotions. Par conséquent, il apparaît particulièrement relevant de caractériser des voies moléculaires impliquées dans la plasticité neuronale, communément altérées parmi les différents syndromes et symptômes des maladies de l'humeur, afin d'améliorer leur compréhension ainsi que de proposer de nouvelles cibles thérapeutiques potentielles. Le facteur de transcription CREB a été de façon répétée et cohérente impliqué dans les mécanismes à long terme de la plasticité neuronale, ainsi que dans la régulation de plusieurs gènes de susceptibilité aux maladies de l'humeur. De plus, une altération dans l'activité de CREB a été impliqué dans leur étiologie et pharmacothérapie. De façon intéressante, des résultats préliminaires sur la protéine récemment découverte CREB-regulated transcription coactivator 1 (CRTC1) ont indiqué que son activation était dépendante de l'activité neuronale, qu'il était un senseur du calcium et de l'AMPc, ainsi qu'un coactivateur de CREB requis et puissant impliqué dans les mécanismes de plasticité neuronale associés à la potentialisation à long terme. En outre, des résultats ont suggéré que le gène majeur de susceptibilité Bdnf est régulé par CRTC1. Ainsi, notre objectif a été d'investiguer un rôle éventuel de CRTC1 dans les maladies de l'humeur en générant et caractérisant une lignée de souris déficiente pour Crtcl, tant au niveau comportemental que moléculaire. De façon intéressante, leur caractérisation détaillée a révélé un profil comportemental reflétant de nombreux aspects des maladies de l'humeur incluant une altération des interactions sociales, une agression pathologique, l'obésité, un retard psychomoteur, une réponse émotionnelle au stress accrue, une diminution de la motivation sexuelle, et des comportements reliés à la dépression. Afin d'investiguer les mécanismes moléculaires sous- jacents cette altération du comportement, ainsi que l'implication de CRTC1 dans l'expression des gènes régulés par CREB in vivo, nous avons quantifié les niveaux de transcrits de plusieurs gènes de susceptibilité régulés par CREB et impliqués dans la physiopathologie des maladies de l'humeur. Remarquablement, nous avons trouvé la sous-expression de composants primordiaux du système neurotrophique: Bdnf et son récepteur TrkB, une diminution majeure de la famille des facteurs de transcription Nr4a, impliqués dans la neuroplasticité et associés à des désordres liés à la dopamine, ainsi que de nombreux autres gènes relevants régulés par CREB. De plus, une analyse neurochimique a révélé que les souris déficientes pour Crtcî présentent une altération du turn-over des monoamines du cortex préfrontal ainsi que des niveaux hippocampaux et accumbaux de sérotonine, associés de façon similaire dans l'étiologie et la pharmacothérapie des maladies de l'humeur. Vue dans son ensemble, la présente thèse supporte l'implication d'une sous-régulation de la voie de CRTCI dans la pathogenèse des maladies de l'humeur ainsi que dans la comorbidité de l'agression pathologique, l'obésité et la dépression. En conclusion, CRTCI pourrait représenter une cible médicamenteuse intéressante aux propriétés antidépressante, antiagressive ou stabilisatrice de l'humeur au travers de la modulation de gènes de susceptibilité majeurs régulés par CREB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is proved the algebraic equality between Jennrich's (1970) asymptotic$X^2$ test for equality of correlation matrices, and a Wald test statisticderived from Neudecker and Wesselman's (1990) expression of theasymptoticvariance matrix of the sample correlation matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small sample properties are of fundamental interest when only limited data is avail-able. Exact inference is limited by constraints imposed by speci.c nonrandomizedtests and of course also by lack of more data. These e¤ects can be separated as we propose to evaluate a test by comparing its type II error to the minimal type II error among all tests for the given sample. Game theory is used to establish this minimal type II error, the associated randomized test is characterized as part of a Nash equilibrium of a .ctitious game against nature.We use this method to investigate sequential tests for the di¤erence between twomeans when outcomes are constrained to belong to a given bounded set. Tests ofinequality and of noninferiority are included. We .nd that inference in terms oftype II error based on a balanced sample cannot be improved by sequential sampling or even by observing counter factual evidence providing there is a reasonable gap between the hypotheses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyzes whether standard covariance matrix tests work whendimensionality is large, and in particular larger than sample size. Inthe latter case, the singularity of the sample covariance matrix makeslikelihood ratio tests degenerate, but other tests based on quadraticforms of sample covariance matrix eigenvalues remain well-defined. Westudy the consistency property and limiting distribution of these testsas dimensionality and sample size go to infinity together, with theirratio converging to a finite non-zero limit. We find that the existingtest for sphericity is robust against high dimensionality, but not thetest for equality of the covariance matrix to a given matrix. For thelatter test, we develop a new correction to the existing test statisticthat makes it robust against high dimensionality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consider the problem of testing k hypotheses simultaneously. In this paper,we discuss finite and large sample theory of stepdown methods that providecontrol of the familywise error rate (FWE). In order to improve upon theBonferroni method or Holm's (1979) stepdown method, Westfall and Young(1993) make eective use of resampling to construct stepdown methods thatimplicitly estimate the dependence structure of the test statistics. However,their methods depend on an assumption called subset pivotality. The goalof this paper is to construct general stepdown methods that do not requiresuch an assumption. In order to accomplish this, we take a close look atwhat makes stepdown procedures work, and a key component is a monotonicityrequirement of critical values. By imposing such monotonicity on estimatedcritical values (which is not an assumption on the model but an assumptionon the method), it is demonstrated that the problem of constructing a validmultiple test procedure which controls the FWE can be reduced to the problemof contructing a single test which controls the usual probability of a Type 1error. This reduction allows us to draw upon an enormous resamplingliterature as a general means of test contruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Body condition can affect coloration of traits used in sexual selection and parent-offspring communication by inducing rapid internal changes in pigment concentration or aggregation, thickness of collagen arrays, or blood flux. The recent "makeup hypothesis" proposes an alternative honesty-reinforcing mechanism, with behaviorally mediated deposition of substances on body surfaces ("cosmetics") generating covariation between body condition and coloration. In birds, the uropygial gland wax is actively spread on feathers using the bill and changes in its deposition rate may cause rapid changes in bill and plumage coloration. Using tawny owl nestlings, we tested 3 predictions of the makeup hypothesis, namely that 1) quantity of preen wax deposited accounts for variation in bill coloration, 2) an immune stimulation (induced by injection of a lipopolysaccharide [LPS]) impairs uropygial gland wax production, and 3) different intensities of immune stimulations (strong vs. weak stimulations induced by injections of either LPS or phytohemagglutinin [PHA], respectively) and high versus low food availabilities result in different bill colorations. We found that 1) preen wax reduced bill brightness, 2) a challenge with LPS impaired uropygial gland development, and 3) nestlings challenged with LPS had a brighter bill than PHA-injected nestlings, whereas diet manipulation had no significant effect. Altogether, these results suggest that a strong immune challenge may decrease preen wax deposition rate on the bill of nestling birds, at least by impairing gland wax production, which causes a change in bill coloration. Our study therefore highlights that cosmetic colors might signal short-term variation in immunological status.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental allergic encephalomyelitis has been shown to have an immunological basis. In fact, the disease can be induced by T cells specific for myelin basic protein, a molecule found in abundance in the central nervous system. In this article, Ellen Heber-Katz and Hans Acha-Orbea discuss the T-cell receptor (TCR) repertoire of the encephalitogenic T-cell response, and show that a limited V gene pool, in fact a single V beta and two V alpha families, are being used by the PL/J and B10.PL mice and by every rat strain examined, even though the antigenic determinants and the major histocompatibility complex (MHC) molecules are different in all cases. This extraordinary finding suggests that the TCR is involved in encephalitogenicity in a way that not only involves the recognition of antigen in association with MHC, but also as an effector molecule that results in encephalitis. If this is true, it implies that TCRs, in general, play more than one role in mammalian physiology.