969 resultados para Northeast
Resumo:
A new digital bathymetric model (DBM) for the Northeast Greenland (NEG) continental shelf (74°N - 81°N) is presented. The DBM has a grid cell size of 250 m × 250 m and incorporates bathymetric data from 30 multibeam cruises, more than 20 single-beam cruises and first reflector depths from industrial seismic lines. The new DBM substantially improves the bathymetry compared to older models. The DBM not only allows a better delineation of previously known seafloor morphology but, in addition, reveals the presence of previously unmapped morphological features including glacially derived troughs, fjords, grounding-zone wedges, and lateral moraines. These submarine landforms are used to infer the past extent and ice-flow dynamics of the Greenland Ice Sheet during the last full-glacial period of the Quaternary and subsequent ice retreat across the continental shelf. The DBM reveals cross-shelf bathymetric troughs that may enable the inflow of warm Atlantic water masses across the shelf, driving enhanced basal melting of the marine-terminating outlet glaciers draining the ice sheet to the coast in Northeast Greenland. Knolls, sinks, and hummocky seafloor on the middle shelf are also suggested to be related to salt diapirism. North-south-orientated elongate depressions are identified that probably relate to ice-marginal processes in combination with erosion caused by the East Greenland Current. A single guyot-like peak has been discovered and is interpreted to have been produced during a volcanic event approximately 55 Ma ago.
Resumo:
The book is devoted to study of diagenetic changes of organic matter and mineral part of sediments and interstitial waters of the Pacific Ocean due to physical-chemical and microbiological processes. Microbiological studies deal with different groups of bacteria. Regularities of quantitative distribution and the role of microorganisms in geochemical processes are under consideration. Geochemical studies highlight redox processes of the early stages of sediment diagenesis, alterations of interstitial waters, regularities of variations in chemical composition of iron-manganese nodules.
Resumo:
High resolution palynological and geochemical data of sediment core GeoB 3910-2 (located offshore Northeast Brazil) spanning the period between 19 600 and 14 500 calibrated year bp (19.6-14.5 ka) show a land-cover change in the catchment area of local rivers in two steps related to changes in precipitation associated with Heinrich Event 1 (H1 stadial). At the end of the last glacial maximum, the landscape in semi-arid Northeast Brazil was dominated by a very dry type of caatinga vegetation, mainly composed of grasslands with some herbs and shrubs. After 18 ka, considerably more humid conditions are suggested by changes in the vegetation and by Corg and C/N data indicative of fluvial erosion. The caatinga became wetter and along lakes and rivers, sedges and gallery forest expanded. The most humid period was recorded between 16.5 and 15 ka, when humid gallery (and floodplain) forest and even small patches of mountainous Atlantic rain forest occurred together with dry forest, the latter being considered as a rather lush type of caatinga vegetation. During this humid phase erosion decreased as less lithogenic material and more organic terrestrial material were deposited on the continental slope of northern Brazil. After 15 ka arid conditions returned. During the humid second phase of the H1 stadial, a rich variety of landscapes existed in Northeast Brazil and during the drier periods small pockets of forest could probably survive in favorable spots, which would have increased the resilience of the forest to climate change.
Multiproxy sedimentation patterns of sediment cores from the continental margin off northeast Brazil
Resumo:
Tropical regions have been reported to play a key role in climate dynamics. To date, however, there are uncertainties in the timing and the amplitude of the response of tropical ecosystems to millennial-scale climate change. We present evidence of an asynchrony between terrestrial and marine signals of climate change during Heinrich events preserved in marine sediment cores from the Brazilian continental margin. The inferred time lag of about 1000 to 2000 years is much larger than the ecological response to recent climate change and appears to be related to the nature of hydrological changes.