999 resultados para North Hampton
Resumo:
The geology and structure of two crustal scale shear zones were studied to understand the partitioning of strain within intracontinental orogenic belts. Movement histories and regional tectonic implications are deduced from observational data. The two widely separated study areas bear the imprint of intense Late Mesozoic through Middle Cenozoic tectonic activity. A regional transition from Late Cretaceous-Early Tertiary plutonism, metamorphism, and shortening strain to Middle Tertiary extension and magmatism is preserved in each area, with contrasting environments and mechanisms. Compressional phases of this tectonic history are better displayed in the Rand Mountains, whereas younger extensional structures dominate rock fabrics in the Magdalena area.
In the northwestern Mojave desert, the Rand Thrust Complex reveals a stack of four distinctive tectonic plates offset along the Garlock Fault. The lowermost plate, Rand Schist, is composed of greenschist facies metagraywacke, metachert, and metabasalt. Rand Schist is structurally overlain by Johannesburg Gneiss (= garnet-amphibolite grade orthogneisses, marbles and quartzites), which in turn is overlain by a Late Cretaceous hornblende-biotite granodiorite. Biotite granite forms the fourth and highest plate. Initial assembly of the tectonic stack involved a Late Cretaceous? south or southwest vergent overthrusting event in which Johannesburg Gneiss was imbricated and attenuated between Rand Schist and hornblende-biotite granodiorite. Thrusting postdated metamorphism and deformation of the lower two plates in separate environments. A post-kinematic stock, the Late Cretaceous Randsburg Granodiorite, intrudes deep levels of the complex and contains xenoliths of both Rand Schist and mylonitized Johannesburg? gneiss. Minimum shortening implied by the map patterns is 20 kilometers.
Some low angle faults of the Rand Thrust Complex formed or were reactivated between Late Cretaceous and Early Miocene time. South-southwest directed mylonites derived from Johannesburg Gneiss are commonly overprinted by less penetrative north-northeast vergent structures. Available kinematic information at shallower structural levels indicates that late disturbance(s) culminated in northward transport of the uppermost plate. Persistence of brittle fabrics along certain structural horizons suggests a possible association of late movement(s) with regionally known detachment faults. The four plates were juxtaposed and significant intraplate movements had ceased prior to Early Miocene emplacement of rhyolite porphyry dikes.
In the Magdalena region of north central Sonora, components of a pre-Middle Cretaceous stratigraphy are used as strain markers in tracking the evolution of a long lived orogenic belt. Important elements of the tectonic history include: (1) Compression during the Late Cretaceous and Early Tertiary, accompanied by plutonism, metamorphism, and ductile strain at depth, and thrust driven? syntectonic sedimentation at the surface. (2) Middle Tertiary transition to crustal extension, initially recorded by intrusion of leucogranites, inflation of the previously shortened middle and upper crustal section, and surface volcanism. (3) Gravity induced development of a normal sense ductile shear zone at mid crustal levels, with eventual detachment and southwestward displacement of the upper crustal stratigraphy by Early Miocene time.
Elucidation of the metamorphic core complex evolution just described was facilitated by fortuitous preservation of a unique assemblage of rocks and structures. The "type" stratigraphy utilized for regional correlation and strain analysis includes a Jurassic volcanic arc assemblage overlain by an Upper Jurassic-Lower Cretaceous quartz pebble conglomerate, in turn overlain by marine strata with fossiliferous Aptian-Albian limestones. The Jurassic strata, comprised of (a) rhyolite porphyries interstratified with quartz arenites, (b) rhyolite cobble conglomerate, and (c) intrusive granite porphyries, are known to rest on Precambrian basement north and east of the study area. The quartz pebble conglomerate is correlated with the Glance Conglomerate of southeastern Arizona and northeastern Sonora. The marine sequence represents part of an isolated arm? of the Bisbee Basin.
Crosscutting structural relationships between the pre-Middle Cretaceous supracrustal section, younger plutons, and deformational fabrics allow the tectonic sequence to be determined. Earliest phases of a Late Cretaceous-Early Tertiary orogeny are marked by emplacement of the 78 ± 3 Ma Guacomea Granodiorite (U/Pb zircon, Anderson et al., 1980) as a sill into deep levels of the layered Jurassic series. Subsequent regional metamorphism and ductile strain is recorded by a penetrative schistosity and lineation, and east-west trending folds. These fabrics are intruded by post-kinematic Early Tertiary? two mica granites. At shallower crustal levels, the orogeny is represented by north directed thrust faulting, formation of a large intermontane basin, and development of a pronounced unconformity. A second important phase of ductile strain followed Middle Tertiary? emplacement of leucogranites as sills and northwest trending dikes into intermediate levels of the deformed section (surficial volcanism was also active during this transitional period to regional extension). Gravitational instabilities resulting from crustal swelling via intrusion and thermal expansion led to development of a ductile shear zone within the stratigraphic horizon occupied by a laterally extensive leucogranite sill. With continued extension, upper crustal brittle normal faults (detachment faults) enhanced the uplift and tectonic denudation of this mylonite zone, ultimately resulting in southwestward displacement of the upper crustal stratigraphy.
Strains associated with the two ductile deformation events have been successfully partitioned through a multifaceted analysis. R_f/Ø measurements on various markers from the "type" stratigraphy allow a gradient representing cumulative strain since Middle Cretaceous time to be determined. From this gradient, noncoaxial strains accrued since emplacement of the leucogranites may be removed. Irrotational components of the postleucogranite strain are measured from quartz grain shapes in deformed granites; rotational components (shear strains) are determined from S-C fabrics and from restoration of rotated dike and vein networks. Structural observations and strain data are compatable with a deformation path of: (1) coaxial strain (pure shear?), followed by (2) injection of leucogranites as dikes (perpendicular to the minimum principle stress) and sills (parallel to the minimum principle stress), then (3) southwest directed simple shear. Modeling the late strain gradient as a simple shear zone permits a minimum displacement of 10 kilometers on the Magdalena mylonite zone/detachment fault system. Removal of the Middle Tertiary noncoaxial strains yields a residual (or pre-existing) strain gradient representative of the Late Cretaceous-Early Tertiary deformation. Several partially destrained cross sections, restored to the time of leucogranite emplacement, illustrate the idea that the upper plate of the core complex bas been detached from a region of significant topographic relief. 50% to 100% bulk extension across a 50 kilometer wide corridor is demonstrated.
Late Cenozoic tectonics of the Magdalena region are dominated by Basin and Range style faulting. Northeast and north-northwest trending high angle normal faults have interacted to extend the crust in an east-west direction. Net extension for this period is minor (10% to 15%) in comparison to the Middle Tertiary detachment related extensional episode.
Resumo:
This thesis consists of two separate parts. Part I (Chapter 1) is concerned with seismotectonics of the Middle America subduction zone. In this chapter, stress distribution and Benioff zone geometry are investigated along almost 2000 km of this subduction zone, from the Rivera Fracture Zone in the north to Guatemala in the south. Particular emphasis is placed on the effects on stress distribution of two aseismic ridges, the Tehuantepec Ridge and the Orozco Fracture Zone, which subduct at seismic gaps. Stress distribution is determined by studying seismicity distribution, and by analysis of 190 focal mechanisms, both new and previously published, which are collected here. In addition, two recent large earthquakes that have occurred near the Tehuantepec Ridge and the Orozco Fracture Zone are discussed in more detail. A consistent stress release pattern is found along most of the Middle America subduction zone: thrust events at shallow depths, followed down-dip by an area of low seismic activity, followed by a zone of normal events at over 175 km from the trench and 60 km depth. The zone of low activity is interpreted as showing decoupling of the plates, and the zone of normal activity as showing the breakup of the descending plate. The portion of subducted lithosphere containing the Orozco Fracture Zone does not differ significantly, in Benioff zone geometry or in stress distribution, from adjoining segments. The Playa Azul earthquake of October 25, 1981, Ms=7.3, occurred in this area. Body and surface wave analysis of this event shows a simple source with a shallow thrust mechanism and gives Mo=1.3x1027 dyne-cm. A stress drop of about 45 bars is calculated; this is slightly higher than that of other thrust events in this subduction zone. In the Tehuantepec Ridge area, only minor differences in stress distribution are seen relative to adjoining segments. For both ridges, the only major difference from adjoining areas is the infrequency or lack of occurrence of large interplate thrust events.
Part II involves upper mantle P wave structure studies, for the Canadian shield and eastern North America. In Chapter 2, the P wave structure of the Canadian shield is determined through forward waveform modeling of the phases Pnl, P, and PP. Effects of lateral heterogeneity are kept to a minimum by using earthquakes just outside the shield as sources, with propagation paths largely within the shield. Previous mantle structure studies have used recordings of P waves in the upper mantle triplication range of 15-30°; however, the lack of large earthquakes in the shield region makes compilation of a complete P wave dataset difficult. By using the phase PP, which undergoes triplications at 30-60°, much more information becomes available. The WKBJ technique is used to calculate synthetic seismograms for PP, and these records are modeled almost as well as the P. A new velocity model, designated S25, is proposed for the Canadian shield. This model contains a thick, high-Q, high-velocity lid to 165 km and a deep low-velocity zone. These features combine to produce seismograms that are markedly different from those generated by other shield structure models. The upper mantle discontinuities in S25 are placed at 405 and 660 km, with a simple linear gradient in velocity between them. Details of the shape of the discontinuities are not well constrained. Below 405 km, this model is not very different from many proposed P wave models for both shield and tectonic regions.
Chapter 3 looks in more detail at recordings of Pnl in eastern North America. First, seismograms from four eastern North American earthquakes are analyzed, and seismic moments for the events are calculated. These earthquakes are important in that they are among the largest to have occurred in eastern North America in the last thirty years, yet in some cases were not large enough to produce many good long-period teleseismic records. A simple layer-over-a-halfspace model is used for the initial modeling, and is found to provide an excellent fit for many features of the observed waveforms. The effects on Pnl of varying lid structure are then investigated. A thick lid with a positive gradient in velocity, such as that proposed for the Canadian shield in Chapter 2, will have a pronounced effect on the waveforms, beginning at distances of 800 or 900 km. Pnl records from the same eastern North American events are recalculated for several lid structure models, to survey what kinds of variations might be seen. For several records it is possible to see likely effects of lid structure in the data. However, the dataset is too sparse to make any general observations about variations in lid structure. This type of modeling is expected to be important in the future, as the analysis is extended to more recent eastern North American events, and as broadband instruments make more high-quality regional recordings available.
Resumo:
The work reported here results from material collected by the author made during 12 years residence in the East Usambaras in the 1950s and early 1960s, as well as a more recent visit. The faunal list the author has compiled comprises 45 species. As well as named species known to occur in the torrential section of the River Sigi, it includes those that are distinct but insufficiently well defined at present to have been formally described. For the sake of completeness, five species of Cloeon and one of Procloeon known to occur in ponds and pools formed by the damming of end-streams in forest clearings, have been included.
Resumo:
During late - and post-glacial times lakes played a leading role in the development of the landscape of the North-west European part of USSR. A variety of geographic circumstances created great variegation of natural conditions in lakes and determined the composition of their diatoms. The basic stages of the development of the diatom flora of lakes are linked with general climatic changes. The deepwater regions of large periglacial lakes of the North-west USSR are inhabited by plankton diatoms of the genera Melosira and Cyclotella. Diatom analysis is further applied for the study of the history of the lakes of north-west USSR.
Resumo:
This partial translation of a longer article describes the phenomenon of ”Blasensand”. Blasensand is formed when sedimentation of dried out sand is suddenly flooded from above. A more detailed explanation of Blasensand is given in this translated part of the paper.
Resumo:
With the aid of the German Research Association in the central programme 'Sand movements in the German coastal region', an investigation into the current conditions in the shallow water areas of the coasts of the south-eastern North Sea between Sylt and the Weser estuary was carried out by the author. Foundations of the work are 19 continuous current recordings in five profiles normal to the coast from years 1971 to 1973. Off the coasts of the south-eastern North Sea varying tidal currents impinge; they are currents whose directions may vary periodically through all points of the compass. They are caused by the circulating tides in the North Sea (Amphidromien). The turning flow movement experiences a deformation in the very shallow coastal waters, and as it happens the flow turning movement in the case of high tide continues right up onto the outer flats, while here and in the fore-lying shallow water areas around the time of low water (on account of the small depths of waters), there prevails a more variable current. A result of this hydrodynamical procedure is the development of counter currents. This partial translation of the original paper provides the summary of this study of of the mudflat areas between the Elbe and Weser.
Resumo:
Several types of seismological data, including surface wave group and phase velocities, travel times from large explosions, and teleseismic travel time anomalies, have indicated that there are significant regional variations in the upper few hundred kilometers of the mantle beneath continental areas. Body wave travel times and amplitudes from large chemical and nuclear explosions are used in this study to delineate the details of these variations beneath North America.
As a preliminary step in this study, theoretical P wave travel times, apparent velocities, and amplitudes have been calculated for a number of proposed upper mantle models, those of Gutenberg, Jeffreys, Lehman, and Lukk and Nersesov. These quantities have been calculated for both P and S waves for model CIT11GB, which is derived from surface wave dispersion data. First arrival times for all the models except that of Lukk and Nersesov are in close agreement, but the travel time curves for later arrivals are both qualitatively and quantitatively very different. For model CIT11GB, there are two large, overlapping regions of triplication of the travel time curve, produced by regions of rapid velocity increase near depths of 400 and 600 km. Throughout the distance range from 10 to 40 degrees, the later arrivals produced by these discontinuities have larger amplitudes than the first arrivals. The amplitudes of body waves, in fact, are extremely sensitive to small variations in the velocity structure, and provide a powerful tool for studying structural details.
Most of eastern North America, including the Canadian Shield has a Pn velocity of about 8.1 km/sec, with a nearly abrupt increase in compressional velocity by ~ 0.3 km/sec near at a depth varying regionally between 60 and 90 km. Variations in the structure of this part of the mantle are significant even within the Canadian Shield. The low-velocity zone is a minor feature in eastern North America and is subject to pronounced regional variations. It is 30 to 50 km thick, and occurs somewhere in the depth range from 80 to 160 km. The velocity decrease is less than 0.2 km/sec.
Consideration of the absolute amplitudes indicates that the attenuation due to anelasticity is negligible for 2 hz waves in the upper 200 km along the southeastern and southwestern margins of the Canadian Shield. For compressional waves the average Q for this region is > 3000. The amplitudes also indicate that the velocity gradient is at least 2 x 10-3 both above and below the low-velocity zone, implying that the temperature gradient is < 4.8°C/km if the regions are chemically homogeneous.
In western North America, the low-velocity zone is a pronounced feature, extending to the base of the crust and having minimum velocities of 7.7 to 7.8 km/sec. Beneath the Colorado Plateau and Southern Rocky Mountains provinces, there is a rapid velocity increase of about 0.3 km/sec, similar to that observed in eastern North America, but near a depth of 100 km.
Complicated travel time curves observed on profiles with stations in both eastern and western North America can be explained in detail by a model taking into account the lateral variations in the structure of the low-velocity zone. These variations involve primarily the velocity within the zone and the depth to the top of the zone; the depth to the bottom is, for both regions, between 140 and 160 km.
The depth to the transition zone near 400 km also varies regionally, by about 30-40 km. These differences imply variations of 250 °C in the temperature or 6 % in the iron content of the mantle, if the phase transformation of olivine to the spinel structure is assumed responsible. The structural variations at this depth are not correlated with those at shallower depths, and follow no obvious simple pattern.
The computer programs used in this study are described in the Appendices. The program TTINV (Appendix IV) fits spherically symmetric earth models to observed travel time data. The method, described in Appendix III, resembles conventional least-square fitting, using partial derivatives of the travel time with respect to the model parameters to perturb an initial model. The usual ill-conditioned nature of least-squares techniques is avoided by a technique which minimizes both the travel time residuals and the model perturbations.
Spherically symmetric earth models, however, have been found inadequate to explain most of the observed travel times in this study. TVT4, a computer program that performs ray theory calculations for a laterally inhomogeneous earth model, is described in Appendix II. Appendix I gives a derivation of seismic ray theory for an arbitrarily inhomogeneous earth model.
Resumo:
The report describes the results of preliminary analyses of data obtained from a series of water temperature loggers sited at various distances (0.8 to 21.8 km) downstream of Kielder dam on the River North Tyne and in two natural tributaries. The report deals with three aspects of the water temperature records: An analysis of an operational aspect of the data sets for selected stations, a simple examination of the effects of impoundment upon water temperature at or close to the point of release, relative to natural river temperatures, and an examination of rate of change of monthly means of daily mean, maximum, minimum and range (maximum - minimum) with distance downstream of the point of release during 1983.
Resumo:
This bibliography covers published and unpublished work on the freshwater sections of the rivers North Tyne, Wear, Tees and Swale, their catchment areas and their tributaries. 393 references are included in the bibliography.
Resumo:
This report describes the general background to the project, defines the stations from which data sets have been obtained and lists the available data. The project had the following aims: To develop a more accurate and less labour-intensive system for the collection and processing of water temperature data from a number of stations within a stream/river system, and to use the River North Tyne downstream of the Kielder impoundment as a test bed for the system. This should yield useful information on the effects of impoundment upon downstream water temperatures.
Resumo:
The Workinq Party of North West Water Authority and the Annan District Salmon Fishery Board's aims were to identify the current problems relating to the salmon and freshwater fisheries in the Solway Firth and its tributaries (embracing the catchments of the Annan, Kirtle Water, Sark, Esk, Eden, Wampool and Waver - and possibly also the Lochar Water and the Nith) to produce agreed outline solutions, and to consider the financial aspects of the future administration of these fisheries.
Resumo:
Eight streams from the North West of England were stocked with Atlantic salmon (Salmo salar L.) fed fry at densities ranging from 1 to 4/m2 over a period of up to three years to evaluate survival to the end of the first an d second growing periods and hence assess the value of stocking as a management practice. Survival to the end of the first growin g period (mean duration of 108 days) was found to vary between 7.8 and 41.3% with a mean of 22% and CV of 0.44. Survival from the end of the first growing period to the end of the second growing period (mean duration of 384 days) ranged from 19.9 to 34.1% with a mean of 26.3% and CV of 0.21. Survival was found to be positively related to 0+ trout density (P < 0.05) and negatively related to altitude (P < 0.05). A comparison of the raw survival data (non standardised with respect to duration of experiments) with that from other studies in relation to stocking densities revealed a negative relationship between fry survival and stocking density (P < 0.05). Densities in excess of 5/m2 tended to result in lower levels of survival. Post stocking fry dispersal patterns were examined for the 1991 data. On average 86.7% of the number of fry surviving remained within the stocked zone by the end of the first growing period. With the exception of one stream there was little in the way of dispersal beyond the stocked zone. The dispersal pattern approximated to the normal distribution (P < 0.05). It was estimated that stocking can result in a net gain of fish to a river system compared with natural productivity, however the numerical significance of this gain and its cost effectiveness need to be determined on a river specific basis.
Resumo:
This paper deals with the development and use of biological reference points for salmon conservation on the River Lune, England. The Lune supports recreational and net fisheries with annual catches in the region of 1,000 and 1356 salmon respectively. Using models transported from other river systems, biological reference points exclusive to the Lune were developed; specifically the number of eggs deposited and carrying capacity estimates for age 0+ and 1+ parr. The conservation limit was estimated at 11.9 million eggs and between 1989 and 1998 was exceeded in two years. Comparison of juvenile salmon densities in 1991 and 1997 with estimates of carrying capacity indicated that 0+ and 1+ parr densities were at around 60 % of carrying capacity and may relate to the number of eggs deposited in 1990 and 1996 being approximately 70% of the target value. The paper discusses the management actions taken in order to ensure that the management target of the conservation limit being met four years out of five is delivered. It also discusses the balance between conservation and exploitation and the socio-economic decisions made in order to ensure parity of impacts on the rod and net fisheries. The regulations have been enforced since 1999 and the paper concludes with an assessment of the actions taken to deliver the management targets, over the last five years.