995 resultados para North Atlantic westery airflow
Resumo:
In the mid-1990s the North Atlantic subpolar gyre warmed rapidly, which had important climate impacts, such as increased hurricane numbers, and changes to rainfall over Africa, Europe and North America. Evidence suggests that the warming was largely due to a strengthening of the ocean circulation, particularly the Atlantic Meridional Overturning Circulation (AMOC). Since the mid-1990s direct and indirect measurements have suggested a decline in the strength of the ocean circulation, which is expected to lead to a reduction in northward heat transport. Here we show that since 2005 a large volume of the upper North Atlantic Ocean has cooled significantly by approximately -0.45C or 1.5x10^22 J, reversing the previous warming trend. By analysing observations and a state-of-the-art climate model, we show that this cooling is consistent with a reduction in the strength of the ocean circulation and heat transport, linked to record low densities in the deep Labrador Sea. The low density in the deep Labrador Sea is primarily due to deep ocean warming since 1995, but a long-term freshening also played a role. The observed upper ocean cooling since 2005 is not consistent with the hypothesis that anthropogenic aerosols directly drive Atlantic temperatures.
Resumo:
The seasonal distributions of humpback and blue whales (Megaptera novaeangliae and Balaenoptera musculus, respectively) in the North Atlantic Ocean are not fully understood. Although humpbacks have been studied intensively in nearshore or coastal feeding and breeding areas, their migratory movements between these areas have been largely inferred. Blue whales have only been studied intensively along the north shore of the Gulf of St. Lawrence, and their seasonal occurrence and movements elsewhere in the North Atlantic are poorly known. We investigated the historical seasonal distributions of these two species using sighting and catch data extracted from American 18th and 19th century whaling logbooks. These data suggest that humpback whales migrated seasonally from low-latitude calving/ breeding grounds over a protracted period, and that some of them traveled far offshore rather than following coastal routes. Also, at least some humpbacks apparently fed early in the summer west of the Mid-Atlantic Ridge, well south of their known present-day feeding grounds. In assessing the present status of the North Atlantic humpback population, it will be important to determine whether such offshore feeding does in fact occur. Blue whales were present across the southern half of the North Atlantic during the autumn and winter months, and farther north in spring and summer, but we had too few data points to support inferences about these whales’ migratory timing and routes.
Resumo:
Results from a large-scale, capture–recapture study of humpback whales Megaptera novaeangliae in the North Atlantic show that migration timing is influenced by feeding ground origin. No significant differences were observed in the number of individuals from any feeding area that were re-sighted in the common breeding area in the West Indies. However, there was a relationship between the proportion (logit transformed) of West Indies sightings and longitude (r2 = 0.97, F1,3 = 98.27, P = 0.0022) suggesting that individuals feeding farther to the east are less likely to winter in the West Indies. A relationship was also detected between sighting date in the West Indies and feeding area. Mean sighting dates in the West Indies for individuals identified in the Gulf of Maine and eastern Canada were significantly earlier than those for animals identified in Greenland, Iceland and Norway (9.97 days, t179 = 3.53, P = 0.00054). There was also evidence for sexual segregation in migration; males were seen earlier on the breeding ground than were females (6.63 days, t105 = 1.98, P = 0.050). This pattern was consistently observed for animals from all feeding areas; a combined model showed a significant effect for both sex (F1 = 5.942, P = 0.017) and feeding area (F3 =4.756, P=0.0038). The temporal difference in occupancy of the West Indies between individuals from different feeding areas, coupled with sexual differences in migratory patterns, presents the possibility that there are reduced mating opportunities between individuals from different high latitude areas.
Resumo:
With discovery and examination of type specimens in the Natural History Museum, London, UK, we reassign Stephanoscyphistoma simplex (Kirkpatrick, 1890) to the genus Nausithoe Kolliker, 1853, as Nausithoe simplex, comb. nov., and designate a lectotype for the species. Use of morphometric measurements is considered important in coronate systematics, but key features also include the unique whorl of internal cusps and the shape of these cusps. All previous records of N. simplex must be re-evaluated, taking into consideration the morphology of these internal cusps.
Modeling the response of the North Atlantic eastern subtropical gyre to the coastal upwelling system