772 resultados para Nonlinear optical effects


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effects of channel inequality on nonlinear signal switching in a nonlinear optical fiber loop mirror (NOLM) were investigated. It was found that the channel-to-channel amplitude differences in optical time division multiplexing (OTDM) have strong impact on swiching behavior of individual channels in a 2R regenerator. The optical pulses in different channels face either suppression of the amplitude noise or increase in noise, depending on the inter-channel amplitude difference. It was stated that appropriate control of the channel uniformity in the OTDM transmitters is required to support stable long-haul transmission in 2R regenerated systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis presents experimental investigation of different effects/techniques that can be used to upgrade legacy WDM communication systems. The main issue in upgrading legacy systems is that the fundamental setup, including components settings such as EDFA gains, does not need to be altered thus the improvement must be carried out at the network terminal. A general introduction to optical fibre communications is given at the beginning, including optical communication components and system impairments. Experimental techniques for performing laboratory optical transmission experiments are presented before the experimental work of this thesis. These techniques include optical transmitter and receiver designs as well as the design and operation of the recirculating loop. The main experimental work includes three different studies. The first study involves a development of line monitoring equipment that can be reliably used to monitor the performance of optically amplified long-haul undersea systems. This equipment can provide instant finding of the fault locations along the legacy communication link which in tum enables rapid repair execution to be performed hence upgrading the legacy system. The second study investigates the effect of changing the number of transmitted 1s and Os on the performance of WDM system. This effect can, in reality, be seen in some coding systems, e.g. forward-error correction (FEC) technique, where the proportion of the 1s and Os are changed at the transmitter by adding extra bits to the original bit sequence. The final study presents transmission results after all-optical format conversion from NRZ to CSRZ and from RZ to CSRZ using semiconductor optical amplifier in nonlinear optical loop mirror (SOA-NOLM). This study is mainly based on the fact that the use of all-optical processing, including format conversion, has become attractive for the future data networks that are proposed to be all-optical. The feasibility of the SOA-NOLM device for converting single and WDM signals is described. The optical conversion bandwidth and its limitations for WDM conversion are also investigated. All studies of this thesis employ 10Gbit/s single or WDM signals being transmitted over dispersion managed fibre span in the recirculating loop. The fibre span is composed of single-mode fibres (SMF) whose losses and dispersion are compensated using erbium-doped fibre amplifiers (EDFAs) and dispersion compensating fibres (DCFs), respectively. Different configurations of the fibre span are presented in different parts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The current optical communications network consists of point-to-point optical transmission paths interconnected with relatively low-speed electronic switching and routing devices. As the demand for capacity increases, then higher speed electronic devices will become necessary. It is however hard to realise electronic chip-sets above 10 Gbit/s, and therefore to increase the achievable performance of the network, electro-optic and all-optic switching and routing architectures are being investigated. This thesis aims to provide a detailed experimental analysis of high-speed optical processing within an optical time division multiplexed (OTDM) network node. This includes the functions of demultiplexing, 'drop and insert' multiplexing, data regeneration, and clock recovery. It examines the possibilities of combining these tasks using a single device. Two optical switching technologies are explored. The first is an all-optical device known as 'semiconductor optical amplifier-based nonlinear optical loop mirror' (SOA-NOLM). Switching is achieved by using an intense 'control' pulse to induce a phase shift in a low-intensity signal propagating through an interferometer. Simultaneous demultiplexing, data regeneration and clock recovery are demonstrated for the first time using a single SOA-NOLM. The second device is an electroabsorption (EA) modulator, which until this thesis had been used in a uni-directional configuration to achieve picosecond pulse generation, data encoding, demultiplexing, and 'drop and insert' multiplexing. This thesis presents results on the use of an EA modulator in a novel bi-directional configuration. Two independent channels are demultiplexed from a high-speed OTDM data stream using a single device. Simultaneous demultiplexing with stable, ultra-low jitter clock recovery is demonstrated, and then used in a self-contained 40 Gbit/s 'drop and insert' node. Finally, a 10 GHz source is analysed that exploits the EA modulator bi-directionality to increase the pulse extinction ratio to a level where it could be used in an 80 Gbit/s OTDM network.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We introduce a novel transmission technique of periodic in-line all-optical format conversion between return-to-zero and non-return-to-zero-like aimed at delaying the accumulation of format-specific impairments. A particular realization of this approach using in-line normal dispersion fibre-enhanced nonlinear optical loop mirrors at 40Gbit/s data rate is presented. © 2004 Optical Society of America.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This letter compares two nonlinear media for simultaneous carrier recovery and generation of frequency symmetric signals from a 42.7-Gb/s nonreturn-to-zero binary phase-shift-keyed input by exploiting four-wave mixing in a semiconductor optical amplifier and a highly nonlinear optical fiber for use in a phase-sensitive amplifier.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We demonstrate that the use of in-line nonlinear optical loop mirrors (NOLMs) in dispersion-managed (DM) transmission systems dominated by amplitude noise can achieve passive 2R regeneration of a 40 and 80 Gbit/s RZ data stream. This is an indication that the use of this approach could obviate the need for full-regeneration in high data rate, strong DM systems, when intra-channel four-wave mixing poses serious problems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this letter, we numerically demonstrate that the use of inline nonlinear optical loop mirrors in strongly dispersion-managed transmission systems dominated by pulse distortion and amplitude noise can achieve all-optical passive 2R regeneration of a 40-Gb/s return-to-zero data stream. We define the tolerance limits of this result to the parameters of the input pulses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we propose a 2R regeneration scheme based on a nonlinear optical loop mirror (NOLM) and optical filtering. We numerically investigate wavelength-division multiplexing (WDM) operation at a channel bit rate of 40 Gbit/s. In distinction to our previous work, we focus here on the regenerative characteristics and signal quality after a single transmission section, whose length is varied from 200 to 1000 km. © 2003 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work numerically analyzes the performances of a 2R (reamplification and reshaping) regenerator based on a nonlinear optical loop mirror and a 3R (reamplification, reshaping, and retiming) regenerator using a nonlinearly enhanced amplitude modulator in 40-Gb/s standard single-mode fiber (SMF)-based optical networks with large amplifier spacing. The characteristics of one(600 km of SMF) and two-step regeneration are examined and the feasibility of wavelength-division multiplexing (WDM) operation is demonstrated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose a 2R regeneration scheme based on a nonlinear optical loop mirror and optical filtering. The feasibility of wavelength-division multiplexing operation at 40 Gbit/s is numerically demonstrated. We examine the characteristics of one-step regeneration and discuss networking applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose an all-optical passive 2R regeneration method for WDM (N×40 Gbit/s) dispersion-managed RZ transmission based on specially designed WDM guiding filters and in-line nonlinear optical loop mirrors. By system optimisation, the feasibility of 150 GHz-spaced × l6 channel transmission over 25,000 km of standard fibre is numerically demonstrated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A method of all-optical passive quasi-regeneration in transoceanic 40 Gbit/s return-to-zero transmission systems with strong dispersion management was described. The use of in-line nonlinear optical loop mirrors (NOLM) by the method was demonstrated. The quasi-regeneration of signals performed by NOLMs was found to improve the systems's performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is numerically demonstrated, for the first time, that dispersion management and in-line nonlinear optical loop mirrors can achieve all-optical passive regeneration and distance-unlimited transmission of a soliton data stream at 40 Gbit/s over standard fibre.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We introduce a novel transmission technique of periodic in-line all-optical format conversion between return-to-zero and non-return-to-zero-like aimed at delaying the accumulation of format-specific impairments. A particular realization of this approach using in-line normal dispersion fibre-enhanced nonlinear optical loop mirrors at 40Gbit/s data rate is presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose a passive all-optical 2R regeneration method for WDM (N×40 Gbit/s) dispersion-managed RZ transmission based on specially designed WDM guiding filters and in-line nonlinear optical loop mirrors. By system optimisation, the feasibility of 150 GHz-spaced × 16 channel 25000 km transmission over standard fibre is numerically demonstrated.