913 resultados para Nondemolition Measurements
Resumo:
With the objective to minimize difficulties for beginners we are proposing the use of a conventional spreadsheet for the calculations of the main germination (or emergence) measurements, the organization of the final data for the statistical analysis and some electronic commands involved in these steps.
Resumo:
Spectral sensitivities of visual systems are specified as the reciprocals of the intensities of light (quantum fluxes) needed at each wavelength to elicit the same criterion amplitude of responses. This review primarily considers the methods that have been developed for electrophysiological determinations of criterion amplitudes of slow-wave responses from single retinal cells. Traditional flash methods can require tedious dark adaptations and may yield erroneous spectral sensitivity curves which are not seen in such modifications as ramp methods. Linear response methods involve interferometry, while constant response methods involve manual or automatic adjustments of continuous illumination to keep response amplitudes constant during spectral scans. In DC or AC computerized constant response methods, feedback to determine intensities at each wavelength is derived from the response amplitudes themselves. Although all but traditional flash methods have greater or lesser abilities to provide on-line determinations of spectral sensitivities, computerized constant response methods are the most satisfactory due to flexibility, speed and maintenance of a constant adaptation level
Resumo:
The objective of the present study was to validate the transit-time technique for long-term measurements of iliac and renal blood flow in rats. Flow measured with ultrasonic probes was confirmed ex vivo using excised arteries perfused at varying flow rates. An implanted 1-mm probe reproduced with accuracy different patterns of flow relative to pressure in freely moving rats and accurately quantitated the resting iliac flow value (on average 10.43 ± 0.99 ml/min or 2.78 ± 0.3 ml min-1 100 g body weight-1). The measurements were stable over an experimental period of one week but were affected by probe size (resting flows were underestimated by 57% with a 2-mm probe when compared with a 1-mm probe) and by anesthesia (in the same rats, iliac flow was reduced by 50-60% when compared to the conscious state). Instantaneous changes of iliac and renal flow during exercise and recovery were accurately measured by the transit-time technique. Iliac flow increased instantaneously at the beginning of mild exercise (from 12.03 ± 1.06 to 25.55 ± 3.89 ml/min at 15 s) and showed a smaller increase when exercise intensity increased further, reaching a plateau of 38.43 ± 1.92 ml/min at the 4th min of moderate exercise intensity. In contrast, exercise-induced reduction of renal flow was smaller and slower, with 18% and 25% decreases at mild and moderate exercise intensities. Our data indicate that transit-time flowmetry is a reliable method for long-term and continuous measurements of regional blood flow at rest and can be used to quantitate the dynamic flow changes that characterize exercise and recovery
Resumo:
Kartta kuuluu A. E. Nordenskiöldin kokoelmaan
Resumo:
Heat transfer effectiveness in nuclear rod bundles is of great importance to nuclear reactor safety and economics. An important design parameter is the Critical Heat Flux (CHF), which limits the transferred heat from the fuel to the coolant. The CHF is determined by flow behaviour, especially the turbulence created inside the fuel rod bundle. Adiabatic experiments can be used to characterize the flow behaviour separately from the heat transfer phenomena in diabatic flow. To enhance the turbulence, mixing vanes are attached to spacer grids, which hold the rods in place. The vanes either make the flow swirl around a single sub-channel or induce cross-mixing between adjacent sub-channels. In adiabatic two-phase conditions an important phenomenon that can be investigated is the effect of the spacer on canceling the lift force, which collects the small bubbles to the rod surfaces leading to decreased CHF in diabatic conditions and thus limits the reactor power. Computational Fluid Dynamics (CFD) can be used to simulate the flow numerically and to test how different spacer configurations affect the flow. Experimental data is needed to validate and verify the used CFD models. Especially the modeling of turbulence is challenging even for single-phase flow inside the complex sub-channel geometry. In two-phase flow other factors such as bubble dynamics further complicate the modeling. To investigate the spacer grid effect on two-phase flow, and to provide further experimental data for CFD validation, a series of experiments was run on an adiabatic sub-channel flow loop using a duct-type spacer grid with different configurations. Utilizing the wire-mesh sensor technology, the facility gives high resolution experimental data in both time and space. The experimental results indicate that the duct-type spacer grid is less effective in canceling the lift force effect than the egg-crate type spacer tested earlier.
Resumo:
The Vernier acuity of 50 normal untrained subjects (20 males and 30 females) was measured by the method of adjustment. Subjects were divided into five age ranges with 10 subjects in each age group: 5-10, 11-20, 21-30, 31-40, and 41-50 years. All subjects had normal visual acuity (20/20) and volunteered to participate in the experiment. Children were selected from a local school and adults recruited from the technical staff of the Department of Ophthalmology of the School of Medicine. Vernier acuity was higher in adults compared to children. Intraindividual variability was high and it was estimated that for most individuals of all age groups a range of 100 to 700 trials was necessary to obtain a mean with a precision of 10%. These results suggest that Vernier acuity variability is an obstacle to its use in clinical settings.
Resumo:
The objective of the present investigation was to study the effects of a 60-s interval of venous congestion between two noninvasive measurements of arterial blood pressure (ABP) on the fluctuation of ABP, assessed by the standard deviation of the differences between two readings. ABP was measured in 345 successive patients, at rest, four times each. For 269 participants, one pair of readings was obtained with a 60-s interval and the other pair without an interval. For 76 patients, the first pair was read at the same interval, and the second pair had venous congestion interposed and there was no waiting interval. There was no increased ABP oscillation, either when there was no interval between ABP readings, or when venous congestion was interposed compared to pairs of ABP measurements performed with a 60-s interval. There was no increase in ABP oscillations when successive ABP readings were taken without an interval or even with venous congestion interposed. Contrary to the present belief, there seems to be no loss of reliability when blood pressure recordings are taken immediately one after another, in the clinical setting.
Resumo:
Intraoperative parathyroid hormone (IO-PTH) measurements have been proposed to improve operative success rates in primary, secondary and tertiary hyperparathyroidism (PHP, SHP and THP). Thirty-one patients requiring parathyroidectomy were evaluated retrospectively from June 2000 to January 2002. Sixteen had PHP, 7 SHP and 8 THP. Serum samples were taken at times 0 (before resection), 10, 20 and 30 min after resection of each abnormal parathyroid gland. Samples from 28 patients were frozen at -70ºC for subsequent tests, whereas samples from three patients were tested while surgery was being performed. IO-PTH was measured using the Elecsys immunochemiluminometric assay (Roche, Mannheim, Germany). The time necessary to perform the assay was 9 min. All samples had a second measurement taken by a conventional immunofluorimetric method. We considered as cured patients who presented normocalcemia in PHP and THP, and normal levels of PTH in SHP one month after surgery and who remained in this condition throughout the follow-up of 1 to 20 months. When rapid PTH assay was compared with a routine immunofluorimetric assay, excellent correlation was observed (r = 0.959, P < 0.0001). IO-PTH measurement showed a rapid average decline of 78.8% in PTH 10 min after adenoma resection in PHP and all patients were cured. SHP patients had an average IO-PTH decrease of 89% 30 min after total parathyroidectomy and cure was observed in 85.7%. THP showed an average IO-PTH decrease of 91.9%, and cure was obtained in 87.5% of patients. IO-PTH can be a useful tool that might improve the rate of successful treatment of PHP, SHP and THP.
Resumo:
Meandering rivers have been perceived to evolve rather similarly around the world independently of the location or size of the river. Despite the many consistent processes and characteristics they have also been noted to show complex and unique sets of fluviomorphological processes in which local factors play important role. These complex interactions of flow and morphology affect notably the development of the river. Comprehensive and fundamental field, flume and theoretically based studies of fluviomorphological processes in meandering rivers have been carried out especially during the latter part of the 20th century. However, as these studies have been carried out with traditional field measurements techniques their spatial and temporal resolution is not competitive to the level achievable today. The hypothesis of this study is that, by exploiting e increased spatial and temporal resolution of the data, achieved by combining conventional field measurements with a range of modern technologies, will provide new insights to the spatial patterns of the flow-sediment interaction in meandering streams, which have perceived to show notable variation in space and time. This thesis shows how the modern technologies can be combined to derive very high spatial and temporal resolution data on fluvio-morphological processes over meander bends. The flow structure over the bends is recorded in situ using acoustic Doppler current profiler (ADCP) and the spatial and temporal resolution of the flow data is enhanced using 2D and 3D CFD over various meander bends. The CFD are also exploited to simulate sediment transport. Multi-temporal terrestrial laser scanning (TLS), mobile laser scanning (MLS) and echo sounding data are used to measure the flow-based changes and formations over meander bends and to build the computational models. The spatial patterns of erosion and deposition over meander bends are analysed relative to the measured and modelled flow field and sediment transport. The results are compared with the classic theories of the processes in meander bends. Mainly, the results of this study follow well the existing theories and results of previous studies. However, some new insights regarding to the spatial and temporal patterns of the flow-sediment interaction in a natural sand-bed meander bend are provided. The results of this study show the advantages of the rapid and detailed measurements techniques and the achieved spatial and temporal resolution provided by CFD, unachievable with field measurements. The thesis also discusses the limitations which remain in the measurement and modelling methods and in understanding of fluvial geomorphology of meander bends. Further, the hydro- and morphodynamic models’ sensitivity to user-defined parameters is tested, and the modelling results are assessed against detailed field measurement. The study is implemented in the meandering sub-Arctic Pulmanki River in Finland. The river is unregulated and sand-bed and major morphological changes occur annually on the meander point bars, which are inundated only during the snow-melt-induced spring floods. The outcome of this study applies to sandbed meandering rivers in regions where normally one significant flood event occurs annually, such as Arctic areas with snow-melt induced spring floods, and where the point bars of the meander bends are inundated only during the flood events.
Resumo:
The use of colored microspheres to adequately evaluate blood flow changes under different circumstances in the same rat has been validated with a maximum of three different colors due to methodological limitations. The aim of the present study was to validate the use of four different colors measuring four repeated blood flow changes in the same rat to assess the role of vasopressor systems in controlling arterial pressure (AP). Red (150,000), white (200,000), yellow (150,000), and blue (200,000) colored microspheres were infused into the left ventricle of 6 male Wistar rats 1) at rest and 2) after vasopressin (aAVP, 10 µg/kg, iv), 3) renin-angiotensin (losartan, 10 mg/kg, iv), and 4) sympathetic system blockade (hexamethonium, 20 mg/kg, iv) to determine blood flow changes. AP was recorded and processed with a data acquisition system (1-kHz sampling frequency). Blood flow changes were quantified by spectrophotometry absorption peaks for colored microsphere components in the tissues evaluated. Administration of aAVP and losartan slightly reduced the AP (-5.7 ± 0.5 and -7.8 ± 1.2 mmHg, respectively), while hexamethonium induced a 52 ± 3 mmHg fall in AP. The aAVP injection increased blood flow in lungs (78%), liver (117%) and skeletal muscle (>150%), while losartan administration enhanced blood flow in heart (126%), lungs (100%), kidneys (80%), and gastrocnemius (75%) and soleus (94%) muscles. Hexamethonium administration reduced only kidney blood flow (50%). In conclusion, four types of colored microspheres can be used to perform four repeated blood flow measurements in the same rat detecting small alterations such as changes in tissues with low blood flow.
Resumo:
The objective of this study was to determine bone quantity by ultrasound measurements of the proximal finger phalanges (AD-SoS = amplitude-dependent speed of sound) of healthy Brazilian schoolchildren living in Paraná, Brazil and to compare these values with European populations. The sample was composed of 1356 Brazilian schoolchildren of both genders (660 males, 696 females), aged 6 to 11 years, divided into white (840) and black (516) groups and compared to age- and gender-matched Europeans. AD-SoS of the schoolchildren increased significantly with age for both genders. Significantly higher AD-SoS values were observed for the white children (1916 ± 58) compared to their black counterparts (1898 ± 72) and for the female gender (1920 ± 61) compared to the male gender (1898 ± 66). Overall, the AD-SoS outcomes for females were similar to those of European studies. However, the AD-SoS of the Brazilian schoolchildren of both genders and skin colors was lower than that reported for children in Poland. AD-SoS outcomes for Brazilian schoolboys were similar to those obtained in Italian studies and were lower than those of the Spanish children. In conclusion, Brazilian schoolchildren of both genders and skin colors showed lower bone quantities than Polish children and Spanish males, and levels similar to Italian children and Spanish females.
Resumo:
Our objective was to determine whether anthropometric measurements of the midarm (MA) could identify subjects with whole body fat-free mass (FFM) depletion. Fifty-five patients (31% females; age: 64.6 ± 9.3 years) with mild/very severe chronic obstructive pulmonary disease (COPD), 18 smokers without COPD (39% females; age: 49.0 ± 7.3 years) and 23 never smoked controls (57% females; age: 48.2 ± 9.6 years) were evaluated. Spirometry, muscle strength and MA circumference were measured. MA muscle area was estimated by anthropometry and MA cross-sectional area by computerized tomography (CT) scan. Bioelectrical impedance was used as the reference method for FFM. MA circumference and MA muscle area correlated with FFM and biceps and triceps strength. Receiver operating characteristic curve analysis showed that MA circumference and MA muscle area cut-off points presented sensitivity and specificity >82% to discriminate FFM-depleted subjects. CT scan measurements did not provide improved sensitivity or specificity. For all groups, there was no significant statistical difference between MA muscle area [35.2 (29.3-45.0) cm²] and MA cross-sectional area values [36.4 (28.5-43.3) cm²] and the linear correlation coefficient between tests was r = 0.77 (P < 0.001). However, Bland-Altman plots revealed wide 95% limits of agreement (-14.7 to 15.0 cm²) between anthropometric and CT scan measurements. Anthropometric MA measurements may provide useful information for identifying subjects with whole body FFM depletion. This is a low-cost technique and can be used in a wider patient population to identify those likely to benefit from a complete body composition evaluation.
Resumo:
The aim of this study was to investigate the influence of image resolution manipulation on the photogrammetric measurement of the rearfoot static angle. The study design was that of a reliability study. We evaluated 19 healthy young adults (11 females and 8 males). The photographs were taken at 1536 pixels in the greatest dimension, resized into four different resolutions (1200, 768, 600, 384 pixels) and analyzed by three equally trained examiners on a 96-pixels per inch (ppi) screen. An experienced physiotherapist marked the anatomic landmarks of rearfoot static angles on two occasions within a 1-week interval. Three different examiners had marked angles on digital pictures. The systematic error and the smallest detectable difference were calculated from the angle values between the image resolutions and times of evaluation. Different resolutions were compared by analysis of variance. Inter- and intra-examiner reliability was calculated by intra-class correlation coefficients (ICC). The rearfoot static angles obtained by the examiners in each resolution were not different (P > 0.05); however, the higher the image resolution the better the inter-examiner reliability. The intra-examiner reliability (within a 1-week interval) was considered to be unacceptable for all image resolutions (ICC range: 0.08-0.52). The whole body image of an adult with a minimum size of 768 pixels analyzed on a 96-ppi screen can provide very good inter-examiner reliability for photogrammetric measurements of rearfoot static angles (ICC range: 0.85-0.92), although the intra-examiner reliability within each resolution was not acceptable. Therefore, this method is not a proper tool for follow-up evaluations of patients within a therapeutic protocol.
Resumo:
It is important to understand how changes in the product formulation can modify its characteristics. Thus, the objective of this study was to investigate the effect of whey protein concentrate (WPC) on the texture of fat-free dairy desserts. The correlation between instrumental and sensory measurements was also investigated. Four formulations were prepared with different WPC concentrations (0, 1.5, 3.0, and 4.5 wt. (%)) and were evaluated using the texture profile analysis (TPA) and rheology. Thickness was evaluated by nine trained panelists. Formulations containing WPC showed higher firmness, elasticity, chewiness, and gumminess and clearly differed from the control as indicated by principal component analysis (PCA). Flow behavior was characterized as time-dependent and pseudoplastic. Formulation with 4.5% WPC at 10 °C showed the highest thixotropic behavior. Experimental data were fitted to Herschel-Bulkley model. The addition of WPC contributed to the texture of the fat-free dairy dessert. The yield stress, apparent viscosity, and perceived thickness in the dairy desserts increased with WPC concentration. The presence of WPC promotes the formation of a stronger gel structure as a result of protein-protein interactions. The correlation between instrumental parameters and thickness provided practical results for food industries.
Resumo:
The objective of this study was to predict by means of Artificial Neural Network (ANN), multilayer perceptrons, the texture attributes of light cheesecurds perceived by trained judges based on instrumental texture measurements. Inputs to the network were the instrumental texture measurements of light cheesecurd (imitative and fundamental parameters). Output variables were the sensory attributes consistency and spreadability. Nine light cheesecurd formulations composed of different combinations of fat and water were evaluated. The measurements obtained by the instrumental and sensory analyses of these formulations constituted the data set used for training and validation of the network. Network training was performed using a back-propagation algorithm. The network architecture selected was composed of 8-3-9-2 neurons in its layers, which quickly and accurately predicted the sensory texture attributes studied, showing a high correlation between the predicted and experimental values for the validation data set and excellent generalization ability, with a validation RMSE of 0.0506.