965 resultados para Noncoding Rnas


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trypanosomatidae is a family of early branching eukaryotes harbouring a distinctive repertoire of gene expression strategies. Functional mature messenger RNA is generated via the trans-splicing and polyadenylation processing of constitutively transcribed polycistronic units. Recently, trans-splicing of pre-small subunit ribosomal RNA in the 5' external transcribed spacer region and of precursor tRNAsec have been described. Here, we used a previously validated semi-nested reverse transcription-polymerase chain reaction strategy to investigate internal transcribed spacer (ITS) I acceptor sites in total RNA from Leishmania (Leishmania) amazonensis. Two distinct spliced leader-containing RNAs were detected indicating that trans-splicing reactions occur at two AG acceptor sites mapped in this ITS region. These data provide further evidence of the wide spectrum of RNA molecules that act as trans-splicing acceptors in trypanosomatids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé Les télomères sont les structures ADN-protéines des extrémités des chromosomes des eucaryotes. L'ADN télomérique est constitué de courtes séquences répétitives. L'intégrité des télomères est essentielle pour protéger les extrémités des chromosomes contre les systèmes de dégradations et pour les distinguer des cassures de l'ADN double brin. Parce que la machinerie de la réplication de l'ADN n'est pas capable de répliquer l'extrémité des chromosomes, les télomères raccourcissent au fur et à mesure des cycles de réplication. Dès que les télomères atteignent une longueur critique, leur structure protectrice est perdue. Cela induit un signal de dommage de l'ADN et l'arrêt du cycle cellulaire. Pour contrebalancer le raccourcissement des télomères, les cellules qui s'auto régénèrent, dont les cellules de la moelle osseuse, les lymphocytes activés et 80-90% des cellules cancéreuses, expriment la télomérase. C'est une ribonucléoprotéine qui a la capacité de synthétiser des séquences télomériques par transcription inverse d'une courte séquence contenue dans sa propre sous-unité ARN avec laquelle elle est associée. La télomérase humaine est une enzyme processive au niveau de l'addition des nucléotides et aussi des répétitions télomériques. La télomérase de levure et la télomérase humaine sont toutes deux dimériques et il a été montré que la télomérase humaine recombinante contient deux ARN qui coopèrent pour fonctionner ainsi que deux sous-unités catalytiques. Cependant, il n'a pas encore été montré quel est le rôle de la dimérisation dans l'activité de la télomérase. Afin d'élucider ce rôle, nous avons exprimé, reconstitué et purifié la télomérase humaine dimérique recombinante. Et pour étudier l'effet d'ARN mutants sur l'activité de la télomérase, nous avons développé une méthode pour reconstituer et enrichir en hétérodimères de télomérase. Les hétérodimères contiennent une sous-unité ARN sauvage et une sous-unité ARN mutée au niveau de la séquence de la matrice. Sur l'ARN muté nous avons introduit une étiquette aptamer ARN-S1 puis nous avons purifié la télomérase via l'etiquette Si. Nous avons montré que la dimérisation est essentielle pour l'activité de la télomérase. Nos données indiquent que chaque télomérase du dimère allonge leur substrat, l'ADN télomérique, indépendamment l'une de l'autre à chaque cycle d'élongation mais que l'addition itérative de répétitions télomériques nécessite une coopération entre les deux télomérases du dimère. Nous proposons donc un modèle dans lequel les deux télomérases du dimères se lient et allongent deux substrats télomères et que pendant l'élongation processive les deux enzymes subissent un changement de conformation de manière coordonnée, ce changement va permettre le repositionnement des substrats pour d'autres cycles d'additions de répétitions télomériques. Dyskeratosis congenita est une maladie mortelle due majoritairement au disfonctionnement de la moelle osseuse. Dans la forme autosomale de la maladie, l'ARN de la télomérase contient des mutations. En utilisant notre système de reconstitution, nous avons montré que ces ARN mutés, qui ont perdu leur activité enzymatique dans le cas d'un homodimère de mutants, sont dominant négatifs quand ils sont présents dans les hétérodimères sauvage/mutant. Cet effet trans-dominant négatif pourrait contribuer à la progression de la maladie. Abstract Telomeres are protein-DNA structures at the ends of linear eukaryotic chromosomes. The telomeric DNA consists of tandemly repeated sequences. Telomeric integrity is essential to protect chromosomal ends from nucleolytic degradation and to prevent their recognition as DNA double strand breaks. Due to the inability of the conventional DNA replication machinery to replicate terminal DNA stretches, telomeres shorten with continuous rounds of DNA replication. As soon as telomeres reach a critical length, their protective structure is lost and the deprotected telomeres will induce a DNA damage response leading to cell cycle arrest. To counteract telomere shortening, self-renewing cells, including bone marrow cells, activated lymphocytes and 80-90% of cancer cells express the cellular reverse transcriptase telomerase, which has the capacity to synthesize telomeric repeats by reverse transcription of a short template sequence encoded by its stably associated RNA subunit. Human telomerase is a processive enzyme for nucleotide as well as repeat addition. Both yeast and human telomerase are dimeric enzymes and recombinant human telomerase has been shown to contain two functionally cooperating RNAs and most probably also two protein subunits. However, it has remained unclear how dimerization may contribute to telomerase activity. To study the role of dimerization, we expressed, reconstituted and purified recombinant human telomerase. We also developed a new method to reconstitute and enrich for telomerase heterodimers containing wild-type (wt) and mutant telomerase RNA subunits. To this end we introduced an S1-RNA-aptamer tag into telomerase RNA and purified telomerase reconstituted with a mixture of untagged and tagged RNA via the S1-tag. Using this experimental system, we introduced template mutations in the tagged RNA subunit and examined the effect of mutant RNAs on wt telomerase activity in wt/mutant heterodimers. We obtained evidence that dimerization is essential for telomerase activity. Our data indicate that the two subunits elongate telomere substrates independently of each other during single rounds of elongation, but that iterative addition of telomeric repeats requires cooperation between the two subunits. We suggest a model, in which dimeric telomerases bind and elongate two telomere substrates and that the two subunits undergo coordinated conformational changes during processive elongation that enable repositioning the substrates for subsequent rounds of repeat addition. Dyskeratosis congenita is a multisystemic disease with bone marrow failure as the major cause of death. The autosomal form of this disease was found to harbor mutations in the telomerase RNA. Using our reconstitution system, we tested whether mutant dyskeratosis telomerase RNAs behaved in a dominant negative manner. We observed that dyskeratosis telomerase RNA mutants, which lacked enzymatic activity were dominant negative, when present in wt/ mutant heterodimers. The transdominant negative effect of these mutants may contribute to disease progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary Pseudomonas fluorescens CHAO is a soil bacterium which was isolated near Morens (Switzerland) and which protects plants from root-pathogenic fungi. This protection is due to extracellular secondary metabolites whose synthesis is regulated by the two-component system GacS/GacA in strain CHAO. Extracellular signals of bacterial origin activate this regulatory system. These signals are different from N-acyl-homoserine lactones, are extracted by dichloromethane and appear to have a low molecular weight. Preliminary evidence was obtained from a small molecule m/z 278 produced by strain CHAO. Similar signals capable of activating GacS/GacA-dependent regulation in strain CHAO were found in a large number of different Gram-negative bacteria. Once activated by signal(s), the sensor GacS is assumed to phosphorylate the response regulator GacA, which positively influences a regulatory cascade, resulting in the synthesis of secondary metabolites. This cascade includes three GacA-controlled small regulatory RNAs and two translational repressor proteins. The regulatory RNAs titrate the repressor proteins; this allows translation of target genes and the synthesis of exoenzymes and secondary metabolites such as antibiotics and hydrogen cyanide. A GFP-based sensor for signal detection was constructed in strain CHAO by fusing the gfp reporter gene to the rsmZ small RNA gene. CHAO mutants defective for signal production were isolated following transposon insertion mutagenesis. In one class of mutants obtained, the gacS gene was inactivated, indicating that GacS/GacA positively controls signal production. In a second class, the thiC gene required for thiamine (vitamin B1) biosynthesis was disrupted. Addition of excess (> 10E-6 M) thiamine to the medium restored signal production. By contrast, when the thiamine concentration was just sufficient to allow normal growth, no production of signal(s) was observed. The mechanism by which thiamine activates signal production remains to be elucidated. Résumé Pseudomonas fluorescens CHAO est une bactérie du sol, isolée près de Morens (Suisse), qui a la capacité de protéger les plantes contre des champignons pathogènes de la racine. Cette protection provient de métabolites secondaires excrétés par la bactérie, dont la synthèse est régulée par le système à deux composants GacS/GacA. Des signaux extracellulaires d'origine bactérienne activent ce système de régulation. Ces signaux, différents des N-acyl¬homosérines lactones, sont extraits par le dichlorométhane et semblent avoir une petite masse moléculaire. Une molécule (masse m/z 278) a été mise en évidence par des expériences préliminaires chez la souche CHAO. Des signaux similaires, capables d'activer la régulation dépendante de GacS/GacA chez la souche CHAO, ont été trouvés chez un grand nombre de bactéries à Gram négative. Une fois activé par le(s) signal(aux), le senseur GacS est supposé phosphoryler le régulateur de réponse GacA, qui influence positivement la cascade de régulation menant à la synthèse des métabolites secondaires. Cette cascade inclut trois petits ARNs régulateurs contrôlés par GacA et deux protéines répresseurs de la traduction. Les ARNs régulateurs titrent les protéines répresseurs, ce qui permet la traduction des gènes cibles et la synthèse d'exoenzymes et de métabolites secondaires tel les antibiotiques et le cyanure d'hydrogène. Un senseur basé sur la GFP pour la détection de signaux a été construit dans la souche CHAO en fusionnant le gène rapporteur gfp au gène de petit ARN rsmZ. Des mutants de CHAO déficients pour la production de signaux ont été isolés au moyen d'une mutagenèse par insertion de transposon. Chez une classe de mutants obtenus, le gène gacS a été inactivé, indiquant que GacS/GacA contrôle positivement la production de signaux. Dans une seconde classe, le gène thiC nécessaire à la biosynthèse de thiamine (vitamine B1) a été interrompu. L'addition en excès (> 10E-6 M) de thiamine au milieu restaure la production de signaux. A l'opposé, quand la concentration de thiamine est juste suffisante pour permettre une croissance normale, aucune production de signaux n'a été observée. Le mécanisme par lequel la thiamine active la production de signaux reste à élucider.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Angiostrongylus cantonensis is an important causative agent of eosinophilic meningitis and eosinophilic meningoencephalitis in humans. MicroRNAs (miRNAs) are small non-coding RNAs that participate in a wide range of biological processes. This study employed a deep-sequencing approach to study miRNAs from young adults of A. cantonensis. Based on 16,880,456 high-quality reads, 252 conserved mature miRNAs including 10 antisense miRNAs that belonging to 90 families, together with 10 antisense miRNAs were identified and characterised. Among these sequences, 53 miRNAs from 25 families displayed 50 or more reads. The conserved miRNA families were divided into four groups according to their phylogenetic distribution and a total of nine families without any members showing homology to other nematodes or adult worms were identified. Stem-loop real-time polymerase chain reaction analysis of aca-miR-1-1 and aca-miR-71-1 demonstrated that their level of expression increased dramatically from infective larvae to young adults and then decreased in adult worms, with the male worms exhibiting significantly higher levels of expression than female worms. These findings provide information related to the regulation of gene expression during the growth, development and pathogenesis of young adults of A. cantonensis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high occurrence of nosocomial multidrug-resistant (MDR) microorganisms is considered a global health problem. Here, we report the draft genome sequence of a MDR Pseudomonas aeruginosa strain isolated in Brazil that belongs to the endemic clone ST277. The genome encodes important resistance determinant genes and consists of 6.7 Mb with a G+C content of 66.86% and 6,347 predicted coding regions including 60 RNAs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable gene silencing by RNA interference (RNAi) can be achieved by expression of small hairpin RNAs (shRNAs) from RNA polymerase III promoters. We have tested lentiviral vectors expressing shRNAs targetting CCR5 in primary CD4 T cells from donors representing various CCR5 and CCR2 genetic backgrounds covering the full spectrum of CCR5 expression levels and permissiveness for HIV-1 infection. A linear decrease in CCR5 expression resulted in a logarithmic decrease in cellular infection, giving up to three logs protection from HIV-1 infection in vitro. Protection was maintained at very high multiplicity of infection. This and other recent reports on RNAi should open a debate about the use of RNAi gene therapy for HIV infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The STAR family of proteins links signaling pathways to various aspects of post-transcriptional regulation and processing of RNAs. Sam68 belongs to this class of heteronuclear ribonucleoprotein particle K (hnRNP K) homology (KH) single domain-containing family of RNA-binding proteins that also contains some domains predicted to bind critical components in signal transduction pathways. In response to phosphorylation and other post-transcriptional modifications, Sam68 has been shown to have the ability to link signal transduction pathways to downstream effects regulating RNA metabolism, including transcription, alternative splicing or RNA transport. In addition to its function as a docking protein in some signaling pathways, this prototypic STAR protein has been identified to have a nuclear localization and to take part in the formation of both nuclear and cytosolic multi-molecular complexes such as Sam68 nuclear bodies and stress granules. Coupling with other proteins and RNA targets, Sam68 may play a role in the regulation of differential expression and mRNA processing and translation according to internal and external signals, thus mediating important physiological functions, such as cell death, proliferation or cell differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long non-coding RNAs (lncRNAs) are deregulated in several tumors, although their role in acute myeloid leukemia (AML) is mostly unknown.We have examined the expression of the lncRNA HOX antisense intergenic RNA myeloid 1 (HOTAIRM1) in 241 AML patients. We have correlated HOTAIRM1 expression with a miRNA expression profile. We have also analyzed the prognostic value of HOTAIRM1 expression in 215 intermediate-risk AML (IR-AML) patients.The lowest expression level was observed in acute promyelocytic leukemia (P < 0.001) and the highest in t(6;9) AML (P = 0.005). In 215 IR-AML patients, high HOTAIRM1 expression was independently associated with shorter overall survival (OR:2.04;P = 0.001), shorter leukemia-free survival (OR:2.56; P < 0.001) and a higher cumulative incidence of relapse (OR:1.67; P = 0.046). Moreover, HOTAIRM1 maintained its independent prognostic value within the favorable molecular subgroup (OR: 3.43; P = 0.009). Interestingly, HOTAIRM1 was overexpressed in NPM1-mutated AML (P < 0.001) and within this group retained its prognostic value (OR: 2.21; P = 0.01). Moreover, HOTAIRM1 expression was associated with a specific 33-microRNA signature that included miR-196b (P < 0.001). miR-196b is located in the HOX genomic region and has previously been reported to have an independent prognostic value in AML. miR-196b and HOTAIRM1 in combination as a prognostic factor can classify patients as high-, intermediate-, or low-risk (5-year OS: 24% vs 42% vs 70%; P = 0.004).Determination of HOTAIRM1 level at diagnosis provided relevant prognostic information in IR-AML and allowed refinement of risk stratification based on common molecular markers. The prognostic information provided by HOTAIRM1 was strengthened when combined with miR-196b expression. Furthermore, HOTAIRM1 correlated with a 33-miRNA signature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many gamma-proteobacteria, the conserved GacS/GacA (BarA/UvrY) two-component system positively controls the expression of one to five genes specifying small RNAs (sRNAs) that are characterized by repeated unpaired GGA motifs but otherwise appear to belong to several independent families. The GGA motifs are essential for binding small, dimeric RNA-binding proteins of a single conserved family designated RsmA (CsrA). These proteins, which also occur in bacterial species outside the gamma-proteobacteria, act as translational repressors of certain mRNAs when these contain an RsmA/CsrA binding site at or near the Shine-Dalgarno sequence plus additional binding sites located in the 5' untranslated leader mRNA. Recent structural data have established that the RsmA-like protein RsmE of Pseudomonas fluorescens makes specific contacts with an RNA consensus sequence 5'-(A)/(U)CANGGANG(U)/(A)-3' (where N is any nucleotide). Interaction with an RsmA/CsrA protein promotes the formation of a short stem supporting an ANGGAN loop. This conformation hinders access of 30S ribosomal subunits and hence translation initiation. The output of the Gac/Rsm cascade varies widely in different bacterial species and typically involves management of carbon storage and expression of virulence or biocontrol factors. Unidentified signal molecules co-ordinate the activity of the Gac/Rsm cascade in a cell population density-dependent manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early pregnancy and multiparity are known to reduce the risk of women to develop breast cancer at menopause. Based on the knowledge that the differentiation of the breast induced by the hormones of pregnancy plays a major role in this protection, this work was performed with the purpose of identifying what differentiation-associated molecular changes persist in the breast until menopause. Core needle biopsies (CNB) obtained from the breast of 42 nulliparous (NP) and 71 parous (P) postmenopausal women were analyzed in morphology, immunocytochemistry and gene expression. Whereas in the NP breast, nuclei of epithelial cells were large and euchromatic, in the P breast they were small and hyperchromatic, showing strong methylation of histone 3 at lysine 9 and 27. Transcriptomic analysis performed using Affymetrix HG_U133 oligonucleotide arrays revealed that in CNB of the P breast, there were 267 upregulated probesets that comprised genes controlling chromatin organization, transcription regulation, splicing machinery, mRNA processing and noncoding elements including XIST. We concluded that the differentiation process induced by pregnancy is centered in chromatin remodeling and in the mRNA processing reactome, both of which emerge as important regulatory pathways. These are indicative of a safeguard step that maintains the fidelity of the transcription process, becoming the ultimate mechanism mediating the protection of the breast conferred by full-term pregnancy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This chapter describes the potential use of viral-mediated gene transfer in the central nervous system for the silencing of gene expression using RNA interference in the context of Huntington's disease (HD). Protocols provided here describe the design of small interfering RNAs, their encoding in lentiviral vectors (LVs) and viral production, as well as procedures for their stereotaxic injection in the rodent brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The riboregulator RsmY of Pseudomonas fluorescens strain CHA0 is an example of small regulatory RNAs belonging to the global Rsm/Csr regulatory systems controlling diverse cellular processes such as glycogen accumulation, motility, or formation of extracellular products in various bacteria. By binding multiple molecules of the small regulatory protein RsmA, RsmY relieves the negative effect of RsmA on the translation of several target genes involved in the biocontrol properties of strain CHA0. RsmY and functionally related riboregulators have repeated GGA motifs predicted to be exposed in single-stranded regions, notably in the loops of hairpins. The secondary structure of RsmY was corroborated by in vivo cleavage with lead acetate. RsmY mutants lacking three or five (out of six) of the GGA motifs showed reduced ability to derepress the expression of target genes in vivo and failed to bind the RsmA protein efficiently in vitro. The absence of GGA motifs in RsmY mutants resulted in reduced abundance of these transcripts and in a shorter half-life (< or = 6 min as compared with 27 min for wild type RsmY). These results suggest that both the interaction of RsmY with RsmA and the stability of RsmY strongly depend on the GGA repeats and that the ability of RsmY to interact with small regulatory proteins such as RsmA may protect this RNA from degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the ∼1% of the human genome in the ENCODE regions, only about half of the transcriptionally active regions (TARs) identified with tiling microarrays correspond to annotated exons. Here we categorize this large amount of “unannotated transcription.” We use a number of disparate features to classify the 6988 novel TARs—array expression profiles across cell lines and conditions, sequence composition, phylogenetic profiles (presence/absence of syntenic conservation across 17 species), and locations relative to genes. In the classification, we first filter out TARs with unusual sequence composition and those likely resulting from cross-hybridization. We then associate some of those remaining with proximal exons having correlated expression profiles. Finally, we cluster unclassified TARs into putative novel loci, based on similar expression and phylogenetic profiles. To encapsulate our classification, we construct a Database of Active Regions and Tools (DART.gersteinlab.org). DART has special facilities for rapidly handling and comparing many sets of TARs and their heterogeneous features, synchronizing across builds, and interfacing with other resources. Overall, we find that ∼14% of the novel TARs can be associated with known genes, while ∼21% can be clustered into ∼200 novel loci. We observe that TARs associated with genes are enriched in the potential to form structural RNAs and many novel TAR clusters are associated with nearby promoters. To benchmark our classification, we design a set of experiments for testing the connectivity of novel TARs. Overall, we find that 18 of the 46 connections tested validate by RT-PCR and four of five sequenced PCR products confirm connectivity unambiguously.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report presents systematic empirical annotation of transcript products from 399 annotated protein-coding loci across the 1% of the human genome targeted by the Encyclopedia of DNA elements (ENCODE) pilot project using a combination of 5' rapid amplification of cDNA ends (RACE) and high-density resolution tiling arrays. We identified previously unannotated and often tissue- or cell-line-specific transcribed fragments (RACEfrags), both 5' distal to the annotated 5' terminus and internal to the annotated gene bounds for the vast majority (81.5%) of the tested genes. Half of the distal RACEfrags span large segments of genomic sequences away from the main portion of the coding transcript and often overlap with the upstream-annotated gene(s). Notably, at least 20% of the resultant novel transcripts have changes in their open reading frames (ORFs), most of them fusing ORFs of adjacent transcripts. A significant fraction of distal RACEfrags show expression levels comparable to those of known exons of the same locus, suggesting that they are not part of very minority splice forms. These results have significant implications concerning (1) our current understanding of the architecture of protein-coding genes; (2) our views on locations of regulatory regions in the genome; and (3) the interpretation of sequence polymorphisms mapping to regions hitherto considered to be "noncoding," ultimately relating to the identification of disease-related sequence alterations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In response to stress or injury the heart undergoes an adverse remodeling process associated with cardiomyocyte hypertrophy and fibrosis. Transformation of cardiac fibroblasts to myofibroblasts is a crucial event initiating the fibrotic process. Cardiac myofibroblasts invade the myocardium and secrete excess amounts of extracellular matrix proteins, which cause myocardial stiffening, cardiac dysfunctions and progression to heart failure. While several studies indicate that the small GTPase RhoA can promote profibrotic responses, the exchange factors that modulate its activity in cardiac fibroblasts are yet to be identified. In the present study, we show that AKAP-Lbc, an A-kinase anchoring protein (AKAP) with an intrinsic Rho-specific guanine nucleotide exchange factor (GEF) activity, is critical for activating RhoA and transducing profibrotic signals downstream of type I angiotensin II receptors (AT1Rs) in cardiac fibroblasts. In particular, our results indicate that suppression of AKAP-Lbc expression by infecting adult rat ventricular fibroblasts with lentiviruses encoding AKAP-Lbc specific short hairpin (sh) RNAs strongly reduces the ability of angiotensin II to promote RhoA activation, differentiation of cardiac fibroblasts to myofibroblasts, collagen deposition as well as myofibroblast migration. Interestingly, AT1Rs promote AKAP-Lbc activation via a pathway that requires the α subunit of the heterotrimeric G protein G12. These findings identify AKAP-Lbc as a key Rho-guanine nucleotide exchange factor modulating profibrotic responses in cardiac fibroblasts.