915 resultados para Non-Newton Flow


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flow past a square-section cylinder with a geometric disturbance is investigated by numerical simulations. The extra terms, due to the introduction of mapping transformation simulating the effect of disturbance into the transformed Navier-Stokes equations, are correctly derived, and the incorrect ones in the previous literature are pointed out and analyzed. Furthermore, the relationship between the vorticity, especially on the cylinder surface, and the disturbance is derived and explained theoretically. The computations are performed at two Reynolds numbers of 100 and 180 and three amplitudes of waviness of 0.006, 0.025 and 0.167 with another aim to explore the effects of different Reynolds numbers and disturbance on the vortex dynamics in the wake and forces on the body. Numerical results have shown that, at the mild waviness of 0.025, the Karman vortex shedding is suppressed completely for Re = 100, while the forced vortex dislocation is appeared in the near wake at the Reynolds number of 180. The drag reduction is up to 21.6% at Re = 100 and 25.7% at Re = 180 for the high waviness of 0.167 compared with the non-wavy cylinder. The lift and the Strouhal number varied with different Reynolds numbers and the wave steepness are also obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the drag reduction by gas injection for power-law fluid flow in stratified and slug flow regimes has been studied. Experimentswere conducted to measure the pressure gradient within air/CMC solutions in a horizontal Plexiglas pipe that had a diameter of 50mm and a length of 30 m. The drag reduction ratio in stratified flow regime was predicted using the two-fluid model. The results showed that the drag reduction should occur over the large range of the liquid holdup when the flow behaviour index remained at the low value. Furthermore, for turbulent gas-laminar liquid stratified flow, the drag reduction by gas injection for Newtonian fluid was more effective than that for shear-shinning fluid, when the dimensionless liquid height remained in the area of high value. The pressure gradient model for a gas/Newtonian liquid slug flow was extended to liquids possessing the Ostwald–de Waele power law model. The proposed model was validated against 340 experimental data point over a wide range of operating conditions, fluid characteristics and pipe diameters. The dimensionless pressure drop predicted was well inside the 20% deviation region for most of the experimental data. These results substantiated the general validity of the model presented for gas/non-Newtonian two-phase slug flows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visualization results demonstrate the evolution of Kelvin-Helmholtz unstable waves into vortex pairing in a separated shear layer of a blunf circular. The results with acoustic excitation are quite different from that without acoustic excitation, and the phenomenon with excitation in a separated shear layer follows the rule of Devil s staircase, which always occurs in a non-linear dynamical system of two coupling vibrators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present paper, a liquid (or melt) film of relatively high temperature ejected from a vessel and painted on the-moving solid film is analyzed by using the second-order fluid model of the non-Newtonian fluid. The thermocapillary flow driven by the temperature gradient on the free surface of a Newtonian liquid film was discussed before. The effect of rheological fluid on thermocapillary flow is considered in the present paper. The analysis is based on the approximations of lubrication theory and perturbation theory. The equation of liquid height and the process of thermal hydrodynamics of the non-Newtonian liquid film are obtained, and the case of weak effect of the rheological fluid is solved in detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High order accurate schemes are needed to simulate the multi-scale complex flow fields to get fine structures in simulation of the complex flows with large gradient of fluid parameters near the wall, and schemes on non-uniform mesh are desirable for many CFD (computational fluid dynamics) workers. The construction methods of difference approximations and several difference approximations on non-uniform mesh are presented. The accuracy of the methods and the influence of stretch ratio of the neighbor mesh increment on accuracy are discussed. Some comments on these methods are given, and comparison of the accuracy of the results obtained by schemes based on both non-uniform mesh and coordinate transformation is made, and some numerical examples with non-uniform mesh are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work. co-current flow characteristics of air/non-Newtonian liquid systems in inclined smooth pipes are studied experimentally and theoretically using transparent tubes of 20, 40 and 60 turn in diameter. Each tube includes two 10 m lone pipe branches connected by a U-bend that is capable of being inclined to any angle, from a completely horizontal to a fully vertical position. The flow rate of each phase is varied over a wide range. The studied flow phenomena are bubbly, plug flow, slug flow, churn flow and annular flow. These are observed and recorded by a high flow. stratified flow. -speed camera over a wide range of operating conditions. The effects of the liquid phase properties, the inclination angle and the pipe diameter on two-phase flow characteristics are systematically studied. The Heywood-Charles model for horizontal flow was modified to accommodate stratified flow in inclined pipes, taking into account the average void fraction and pressure drop of the mixture flow of a gas/non-Newtonian liquid. The pressure drop gradient model of Taitel and Barnea for a gas/Newtonian liquid slug flow was extended to include liquids possessing shear-thinning flow behaviour in inclined pipes. The comparison of the predicted values with the experimental data shows that the models presented here provide a reasonable estimate of the average void fraction and the corresponding pressure drop for the mixture flow of a gas/ non-Newtonian liquid. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediment transport in rill flows exhibits the characteristics of non-equilibrium transport, and the sediment transport rate of rill flow gradually recovers along the flow direction by erosion. By employing the concept of partial equilibrium sediment transport from open channel hydraulics, a dynamic model of rill erosion on hillslopes was developed. In the model, a parameter, called the restoration coefficient of sediment transport capacity, was used to express the recovery process of sediment transport rate, which was analysed by dimensional analysis and determined from laboratory experimental data. The values of soil loss simulated by the model were in agreement with observed values. The model results showed that the length and gradient of the hillslope and rainfall intensity had different influences on rill erosion. Copyright (c) 2006 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The steady bifurcation flows in a spherical gap (gap ratio sigma=0.18) with rotating inner and stationary outer spheres are simulated numerically for Re(c1)less than or equal to Re less than or equal to 1 500 by solving steady axisymmetric incompressible Navier-Stokes equations using a finite difference method. The simulation shows that there exist two steady stable flows with 1 or 2 vortices per hemisphere for 775 less than or equal to Re less than or equal to 1 220 and three steady stable flows with 0, 1, or 2 vortices for 1 220flows at the same Reynolds number is related with different initial conditions which on be generated by different accelerations of the inner sphere. Generation of zero-or two-vortex flow depends mainly on the acceleratio n, but that of one-vortex flow also depends on the perturbation breaking the equatorial symmetry. The mechanism of development of a saddle point in the meridional plane at higher Re number and its role in the formation of two-vortex flow are analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new numerical method for solving the axisymmetric unsteady incompressible Navier-Stokes equations using vorticity-velocity variables and a staggered grid is presented. The solution is advanced in time with an explicit two-stage Runge-Kutta method. At each stage a vector Poisson equation for velocity is solved. Some important aspects of staggering of the variable location, divergence-free correction to the velocity held by means of a suitably chosen scalar potential and numerical treatment of the vorticity boundary condition are examined. The axisymmetric spherical Couette flow between two concentric differentially rotating spheres is computed as an initial value problem. Comparison of the computational results using a staggered grid with those using a non-staggered grid shows that the staggered grid is superior to the non-staggered grid. The computed scenario of the transition from zero-vortex to two-vortex flow at moderate Reynolds number agrees with that simulated using a pseudospectral method, thus validating the temporal accuracy of our method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

in the corona, consisting of an eruptive prominence and/or a magnetic flux region (loop or arcade, or blob) in front of the prominence. Ahead of the piston, there is a compressed flow, which produces a shock front. This high-density region corresponds to the bright feature of the transient. Behind the piston, there is a rarefaction region, which corresponds to the dark feature of the transient. Therefore, both the bright and dark features of the transient may be explained at the same time by the dynamical process of the moving piston.