941 resultados para New materials
Resumo:
A siderurgia vem sofrendo transformações que buscam inovação e matérias-primas alternativas. Dentro deste contexto, o uso de resíduos industriais para a formação de escórias sintéticas é tido como alternativa na busca de novos materiais e rotas de reaproveitamento de resíduos. Portanto, este trabalho teve como objetivo estudar o uso de escórias sintéticas na etapa de dessulfuração do ferro-gusa, aço e ferro fundido. Assim como, propor a utilização da sodalita e da alumina em substituição à fluorita e o resíduo de mármore em substituição à cal convencional. Inicialmente, o resíduo foi caracterizado utilizando as seguintes técnicas: análise química, análise granulométrica, área de superfície específica, difração de raios-X, microscopia eletrônica de varredura (MEV) e análise de espectroscopia por energia dispersiva (EDS). Os resultados da caracterização mostraram que aproximadamente 90% das partículas do resíduo de mármore estão abaixo de 100m e sua área superficial foi de 0,24m²/g. Através da difração de raios-X foi observado que o resíduo é composto por CaCO3, MgCO3 e SiO2. Na sequência, foram feitas simulações com o software Thermo-Calc para obter dados termodinâmicos das fases presentes nas misturas e compará-los com os resultados experimentais. Além disso, também foram calculados dados de capacidade de sulfeto (Cs), partição de enxofre (Ls) e basicidade ótica () das misturas iniciais. Posteriormente, foram realizados os ensaios experimentais em escala laboratorial para ferro-gusa, ferro fundido e aço, respectivamente nas temperaturas de 1400°C, 1550°C e 1600°C. Nos ensaios de dessulfuração do aço e do ferro-gusa, utilizou-se um rotor de alumina com o objetivo de favorecer a agitação no metal e aumentar a remoção de enxofre. Na etapa de dessulfuração do ferro-gusa, constatou-se que a fase sólida de CaO é a responsável pela remoção de enxofre e que a presença das fases silicato tricálcio e aluminato tricálcio (3CaO.SiO2 e 3CaO.Al2O3) limitam a reação, sendo maiores suas concentrações nas escórias que utilizaram o resíduo de mármore e sodalita, devido a presença de SiO2 e Al2O3 nestas matérias-primas. Já para o aço e o ferro fundido, que foram estudados com escórias à base de CaO e Al2O3, observou-se que o aumento da fase líquida favoreceu a dessulfuração. Verificou-se que a dessulfuração no ferro fundido foi por escória de topo e no aço por um processo misto, onde a fase líquida e fase sólida participaram da dessulfuração.
Resumo:
Activated carbons with a highly developed mesoscale cavitation-linked structure have been prepared from natural products (e.g. peach stones) by combining chemical and physical activation processes. Characterization results show that these materials exhibit a large “apparent” surface area (∼1500 m2/g) together with a well-defined mesoporous structure, i.e. large cavities connected to the external surface through narrower mesoporous necks (cavitation effects).
Resumo:
In the literature, different approaches, terminologies, concepts and equations are used for calculating gas storage capacities. Very often, these approaches are not well defined, used and/or determined, giving rise to significant misconceptions. Even more, some of these approaches, very much associated with the type of adsorbent material used (e.g., porous carbons or new materials such as COFs and MOFs), impede a suitable comparison of their performances for gas storage applications. We review and present the set of equations used to assess the total storage capacity for which, contrarily to the absolute adsorption assessment, all its experimental variables can be determined experimentally without assumptions, ensuring the comparison of different porous storage materials for practical application. These material-based total storage capacities are calculated by taking into account the excess adsorption, the bulk density (ρbulk) and the true density (ρtrue) of the adsorbent. The impact of the material densities on the results are investigated for an exemplary hydrogen isotherm obtained at room temperature and up to 20 MPa. It turns out that the total storage capacity on a volumetric basis, which increases with both, ρbulk and ρtrue, is the most appropriate tool for comparing the performance of storage materials. However, the use of the total storage capacities on a gravimetric basis cannot be recommended, because low material bulk densities could lead to unrealistically high gravimetric values.
Resumo:
En el ámbito de acústica de la edificación es común el uso de materiales fibrosos como materiales absorbentes acústicos. Uno de estos materiales cada vez más utilizado es la lana de poliéster. Un problema que presenta el chip virgen de poliéster es que se obtiene del petróleo, cuyo precio no hace más que incrementarse en los últimos años. En este trabajo se presenta una lana de poliéster alternativa, obtenida mediante el tratamiento del PET, a través del conveniente ciclo de reciclado de botellas de plástico. Se comparan valores del coeficiente de absorción; en incidencia normal y en cámara reverberante de los materiales elaborados a partir de chip virgen y de las nuevas lanas obtenidas del PET. Además, se propone un modelo empírico de comportamiento acústico de estas nuevas lanas. Los resultados obtenidos han sido favorables, la fibra virgen ya ha sido sustituida por fibra reciclada en su proceso de fabricación.
Resumo:
The main directions in food packaging research are targeted toward improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant, and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.
Resumo:
A new non-porous carbon material from granular olive stones has been prepared to be used as a reference material for the characterization of the pore structure of activated carbons. The high precision adsorption isotherms of nitrogen at 77.4 K and argon at 87.3 K on the newly developed sample have been measured, providing the standard data for a more accurate comparative analysis to characterize disordered porous carbons using comparative methods such as t- and αS-methods.
Resumo:
A utilização de tecnologias de prototipagem em objetos e estruturas do dia-a-dia é cada vez maior. Porém, os componentes que é possível fabricar estão em geral associados a protótipos demonstrativos não funcionais. Para ultrapassar estas limitações têm vindo a ser desenvolvidos novos materiais, procurando a melhoria das suas características mecânicas. A presente dissertação insere-se no projeto Firend®, que se tem vindo a desenvolver numa parceria entre a Academia Militar e outras instituições como o Instituto Superior Técnico e procura avaliar a viabilidade da utilização da técnica de deposição de resina fotopolimerizável por ultra-violeta no fabrico de projéteis para o transporte especial de agentes extintores, procurando caracterizar o desempenho deste material em condições operativas simulativas do disparo real. A pesquisa bibliográfica da presente dissertação baseou-se numa breve introdução aos materiais poliméricos. O trabalho teórico consistiu na modelação numérica através do método dos elementos finitos do ensaio de compressão utilizando o programa Deform® e na respetiva validação do modelo através de comparação dos resultados das simulações com dados experimentais existentes na literatura da especialidade. O trabalho experimental fundamentou-se no fabrico e preparação de provetes através da tecnologia de impressão 3D, na descrição das ferramentas utilizadas e do plano experimental. No final verificou-se a fratura de todos os provetes ensaiados e uma grande dispersão dos resultados, conseguindo-se apenas retirar uma tensão de segurança que não deve ser ultrapassada. De acordo com o estudo realizado o material ensaiado demonstrou-se não ser apropriado para a aplicação pretendida e recomenda-se a avaliação de outros materiais igualmente utilizados pelas técnicas de prototipagem rápida, tais como uma mistura de uma resina polimérica com um outro material com características mecânicas mais adequadas.
Resumo:
A preocupação com o estudo das formas e dimensões das arcadas dentárias sempre esteve presente na ciência ortodôntica. Para a Ortodontia Lingual, que surgiu no final da década de 70, o primeiro artigo publicado foi o Fujita, onde relatou sobre a forma do arco a ser utilizado nesta técnica, a forma de cogumelo. Apesar de estar sendo divulgada de uma maneira mais intensa nestes últimos anos como uma solução estética definitiva e eficaz, o enfoque dos estudos sobre esta técnica tem sido a fabricação de novos materiais, técnicas de montagem do aparelho lingual e soluções clínicas, com poucas menções sobre a morfologia das arcadas dentárias. O presente trabalho tem a finalidade de estudar as formas e dimensões linguais das arcadas dentárias de indivíduos leucodermas com oclusão normal. Foram utilizados 47 pares de modelos de gesso de oclusão normal digitalizados pela face olcusal, previamente desgastadas até o terço médio da coroa para proporcionar melhor visualização. Por meio do programa CorelDraw 12 foram determinados pontos de referências e criados alguns pontos virtuais necessários para a realização das medidas. Os resultados determinaram três formas das arcadas dentárias linguais: cogumelo, árvore de Natal e mista. A maior prevalência foi a forma árvore de Natal, mas quando analisadas separadamente as arcadas dentárias linguais, encontrados no superior, maior prevalência da forma de cogumelo e no inferior da forma árvore de Natal. Conseqüentemente, esta foi a combinação mais prevalente entre as arcadas dentárias linguais superiores e inferiores. Propusemos diagramas para conformação de arcos ortodônticos linguais com base nos valores obtidos da amostra, determinando-se o quartil 1, mediana e quartil 3, como definidores dos tamanhos pequeno, médio e grande.
Resumo:
The contact lens represents a well-established important class of biomaterials. This thesis brings together the literature, mostly Japanese and American patents, concerned with an important group of polymers, `rigid gas permeable contact lens materials'. A comparison is made of similarities in the underlying chemical themes, centring on the use of variants of highly branched siloxy compounds with polymerizable methacrylate groups. There is a need for standard techniques to assess laboratory behaviour in relation to in vitro performance. A major part of the present work is dedicated to the establishment of such standardised techniques. It is apparent that property design requirements in this field (i.e. oxygen permeability, surface and mechanical properties) are to some extent conflicting. In principle, the structural approaches used to obtain high oxygen permeability lead to surface properties that are less than ideal in terms of compatibility with tears. PMMA is known to have uniquely good (but not perfect) surface properties in this respect; it has been used as a starting point in attempting to design new materials that possess a more acceptable compromise of transport and surface properties for ocular use. Initial examination of the oxygen permeabilities of relatively simple alkyl methacrylates, show that butyl methacrylate which has a permeability some fifty times greater than PMMA, represents an interesting and hitherto unexplored group of materials for ophthalmic applications. Consideration was similarly given to surface modification techniques that would produce materials having the ability to sustain coherent tear film in the eye without markedly impairing oxygen transport properties. Particular attention is paid to the use of oxygen plasma techniques in this respect. In conclusion, similar design considerations were applied to an extended wear hydrogel lens material in an attempt to overcome mechanical stability deficiencies which manifest themselves lq`in vivo' but not `in vitro'. A relatively simple structure modification, involving steric shielding of the amide substituent group, proved to be an effective solution to the problem.
Resumo:
What is the architecture of transience? What role does architecture play in the impermanent context of the nomad? What form does architecture take when our perception of shelter transforms from fixed and static to flexible and transportable? How does architecture react to the challenges of mobility and change? Traditional building forms speak of stability as an important aspect of architecture. Does portability imply a different building form? During the1950s Buckminister Fuller introduced the idea of mobile, portable structures. In the 1960s Archigrams' examples of architectural nomadism made the mobile home an accepted feature of our contemporary landscape. Currently, new materials and new methods of assembly and transportation open opportunities for rethinking portable architecture. For this thesis, a shelter was developed which provides inhabitable space and portability. The shelter was designed to be easily carried as a backpack. With minimum human effort, the structure is assembled and erected in a few minutes. Although this portable shelter needs to be maneuvered, folded and tucked away for transportation, it does meet the demands of nomadic behavior which emphasizes comfort and portability.
Resumo:
Microelectronic systems are multi-material, multi-layer structures, fabricated and exposed to environmental stresses over a wide range of temperatures. Thermal and residual stresses created by thermal mismatches in films and interconnections are a major cause of failure in microelectronic devices. Due to new device materials, increasing die size and the introduction of new materials for enhanced thermal management, differences in thermal expansions of various packaging materials have become exceedingly important and can no longer be neglected. X-ray diffraction is an analytical method using a monochromatic characteristic X-ray beam to characterize the crystal structure of various materials, by measuring the distances between planes in atomic crystalline lattice structures. As a material is strained, this interplanar spacing is correspondingly altered, and this microscopic strain is used to determine the macroscopic strain. This thesis investigates and describes the theory and implementation of X-ray diffraction in the measurement of residual thermal strains. The design of a computer controlled stress attachment stage fully compatible with an Anton Paar heat stage will be detailed. The stress determined by the diffraction method will be compared with bimetallic strip theory and finite element models.
Resumo:
In recent years, solid carriers suitable oxygen have been developed for use in different chemical processes recirculation. The success of this technology is directly related to the chemical reactivity and the oxygen storage capacity of the carrier. Thus, research into the development of new materials that can be applied to the process becomes extremely important. Possible candidates are the carriers based on nickel and copper for presenting favorable thermodynamic properties. In this work, aluminates type MAl2O4 (M = Mg and Ca) and M0,9B0,1Al2O4 (B = Ni and Cu) that are used as supports were synthesized by combustion reactions assisted by microwave and calcined at 900°C/2h. Then, the carriers were impregnated with 10% (m/m) of nickel or copper, and subsequently calcined at 600°C/2h to obtain the solid oxygen carriers, which were characterized by X-ray diffraction (XRD) Microscopy scanning electron microscopy (SEM) and temperature programmed reduction (TPR). Reactions simulating the combustion process by chemical recirculation were performed by cycles reduction/oxidation, in order to evaluate the reactivity of carriers. XRD analysis revealed diffraction peaks of the spinel type structures. In the doped substrates were verified the presence of secondary phases, suggesting that all the metal was incorporated into the spinel structure. In solid oxygen carriers, the NiO and CuO phases were observed after impregnation of active phases on different media. The results of evaluations of chemical cycles reduction/oxidation revealed that TSO's impregnated with nickel in various media were more active and are potential candidates for use in the chemical recirculation technology
Resumo:
This thesis is part of research on new materials for catalysis and gas sensors more active, sensitive, selective. The aim of this thesis was to develop and characterize cobalt ferrite in different morphologies, in order to study their influence on the electrical response and the catalytic activity, and to hierarchize these grains for greater diffusivity of gas in the material. The powders were produced via hydrothermal and solvothermal, and were characterized by thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, transmission electron microscopy (electron diffraction, highresolution simulations), and energy dispersive spectroscopy. The catalytic and electrical properties were tested in the presence of CO and NO2 gases, the latter in different concentrations (1-100 ppm) and at different temperatures (room temperature to 350 ° C). Nanooctahedra with an average size of 20 nm were obtained by hydrothermal route. It has been determined that the shape of the grains is mainly linked to the nature of the precipitating agent and the presence of OH ions in the reaction medium. By solvothermal method CoFe2O4 spherical powders were prepared with grain size of 8 and 20 nm. CoFe2O4 powders exhibit a strong response to small amounts of NO2 (10 ppm to 200 ° C). The nanooctahedra have greater sensitivity than the spherical grains of the same size, and have smaller response time and shorter recovery times. These results were confirmed by modeling the kinetics of response and recovery of the sensor. Initial tests of catalytic activity in the oxidation of CO between temperatures of 100 °C and 350 °C show that the size effect is predominant in relation the effect of the form with respect to the conversion of the reaction. The morphology of the grains influence the rate of reaction. A higher reaction rate is obtained in the presence of nanooctahedra. In order to improve the detection and catalytic properties of the material, we have developed a methodology for hierarchizing grains which involves the use of carbonbased templates.
Resumo:
The acceleration of technological change and the process of globalization has intensified competition and the need for new products (goods and services), resulting in growing concern for organizations in the development of technological, economic and social advances. This work presents an overview of the development of wind energy-related technologies and design trends. To conduct this research, it is (i) a literature review on technological innovation, technological forecasting methods and fundamentals of wind power; (ii) the analysis of patents, with the current technology landscape studied by means of finding information in patent databases; and (iii) the preparation of the map of technological development and construction of wind turbines of the future trend information from the literature and news from the sector studied. Step (ii) allowed the study of 25 644 patents between the years 2003-2012, in which the US and China lead the ranking of depositors and the American company General Electric and the Japanese Mitsubishi stand as the largest holder of wind technology. Step (iii) analyzed and identified that most of the innovations presented in the technological evolution of wind power are incremental product innovations to market. The proposed future trends shows that the future wind turbines tend to have a horizontal synchronous shaft, which with the highest diameter of 194m and 164m rotor nacelle top, the top having 7,5MW generation. The materials used for the blades are new materials with characteristics of low density and high strength. The towers are trend with hybrid materials, uniting the steel to the concrete. This work tries to cover the existing gap in the gym on the use of technological forecasting techniques for the wind energy industry, through the recognition that utilize the patent analysis, analysis of scientific articles and stories of the area, provide knowledge about the industry and influencing the quality of investment decisions in R & D and hence improves the efficiency and effectiveness of wind power generation
Resumo:
The advancement of nanotechnology in the synthesis and characterisation of nanoparticles (NP's) has played an important role in the development of new technologies for various applications of nano-scale materials that have unique properties. The scientific development in the last decades in the field of nanotechnology has sought ceaselessly, the discovery of new materials for the most diverse applications, such as biomedical areas, chemical, optical, mechanical and textiles. The high bactericidal efficiency of metallic nanoparticles (Au and Ag), among other metals is well known, due to its ability to act in the DNA of fungi, viruses and bacteria, interrupting the process of cellular respiration, making them important means of study, in addition to its ability to protect UVA and UVB. The present work has as its main objective the implementation of an innovative method in the impregnation of nanoparticles of gold in textile substrate, functionalized with chitosan, by a dyeing process by exhaustion, with the control of temperature, time and velocity, thus obtaining microbial characteristics and UV protection. The exhausted substrates with colloidal solutions of NPAu's presented the colours, lilac and red (soybean knits) due to their surface plasmon peak around 520-540 nm. The NPAu's were synthesized chemically, using sodium citrate as a reducing agent and stabilizer. The material was previously cationised with chitosan, a natural polyelectrolyte, with the purpose of functionalising it to enhance the adsorption of colloid, at concentrations of 5, 7, 10 and 20 % of the bonding agent on the weight of the material (OWM). It was also observed, through an experimental design 23 , with 3 central points, which was the best process of exhaustion of the substrates, using the following factors: Time (min.), temperature (OC) and concentration of the colloid (%), having as a response to variable K/S (ABSORBÂNCIA/ Kubelka-Munk) of the fibres. Furthermore, it was evidenced as the best response, the following parameters: concentration 100%, temperature 70 ºC and time 30 minutes. The substrate with NPAu was characterised by XRD; thermal analysis using TGA; microstructural study using SEM/EDS and STEM, thus showing the NP on the surface of the substrate confirming the presence of the metal. The substrates showed higher washing fastness, antibacterial properties and UV radiation protection.