783 resultados para Neural Network-models
Resumo:
Foreknowledge about upcoming events may be exploited to optimize behavioural responses. In a previous work, using an eye movement paradigm, we showed that different types of partial foreknowledge have different effects on saccadic efficiency. In the current study, we investigated the neural circuitry involved in processing of partial foreknowledge using functional magnetic resonance imaging. Fourteen subjects performed a mixed antisaccade, prosaccade paradigm with blocks of no foreknowledge, complete foreknowledge or partial foreknowledge about stimulus location, response direction or task. We found that saccadic foreknowledge is processed primarily within the well-known oculomotor network for saccades and antisaccades. Moreover, we found a consistent decrease in BOLD activity in the primary and secondary visual cortex in all foreknowledge conditions compared to the no-foreknowledge conditions. Furthermore we found that the different types of partial foreknowledge are processed in distinct brain areas: response foreknowledge is processed in the frontal eye field, while stimulus foreknowledge is processed in the frontal and parietal eye field. Task foreknowledge, however, revealed no positive BOLD correlate. Our results show different patterns of engagement in the saccade-related neural network depending upon precisely what type of information is known ahead.
Resumo:
When studying a biological regulatory network, it is usual to use boolean network models. In these models, boolean variables represent the behavior of each component of the biological system. Taking in account that the size of these state transition models grows exponentially along with the number of components considered, it becomes important to have tools to minimize such models. In this paper, we relate bisimulations, which are relations used in the study of automata (general state transition models) with attractors, which are an important feature of biological boolean models. Hence, we support the idea that bisimulations can be important tools in the study some main features of boolean network models.We also discuss the differences between using this approach and other well-known methodologies to study this kind of systems and we illustrate it with some examples.
Resumo:
We study the problem of detecting sentences describing adverse drug reactions (ADRs) and frame the problem as binary classification. We investigate different neural network (NN) architectures for ADR classification. In particular, we propose two new neural network models, Convolutional Recurrent Neural Network (CRNN) by concatenating convolutional neural networks with recurrent neural networks, and Convolutional Neural Network with Attention (CNNA) by adding attention weights into convolutional neural networks. We evaluate various NN architectures on a Twitter dataset containing informal language and an Adverse Drug Effects (ADE) dataset constructed by sampling from MEDLINE case reports. Experimental results show that all the NN architectures outperform the traditional maximum entropy classifiers trained from n-grams with different weighting strategies considerably on both datasets. On the Twitter dataset, all the NN architectures perform similarly. But on the ADE dataset, CNN performs better than other more complex CNN variants. Nevertheless, CNNA allows the visualisation of attention weights of words when making classification decisions and hence is more appropriate for the extraction of word subsequences describing ADRs.
Resumo:
Most of the existing open-source search engines, utilize keyword or tf-idf based techniques to find relevant documents and web pages relative to an input query. Although these methods, with the help of a page rank or knowledge graphs, proved to be effective in some cases, they often fail to retrieve relevant instances for more complicated queries that would require a semantic understanding to be exploited. In this Thesis, a self-supervised information retrieval system based on transformers is employed to build a semantic search engine over the library of Gruppo Maggioli company. Semantic search or search with meaning can refer to an understanding of the query, instead of simply finding words matches and, in general, it represents knowledge in a way suitable for retrieval. We chose to investigate a new self-supervised strategy to handle the training of unlabeled data based on the creation of pairs of ’artificial’ queries and the respective positive passages. We claim that by removing the reliance on labeled data, we may use the large volume of unlabeled material on the web without being limited to languages or domains where labeled data is abundant.
Resumo:
In this thesis, the problem of controlling a quadrotor UAV is considered. It is done by presenting an original control system, designed as a combination of Neural Networks and Disturbance Observer, using a composite learning approach for a system of the second order, which is a novel methodology in literature. After a brief introduction about the quadrotors, the concepts needed to understand the controller are presented, such as the main notions of advanced control, the basic structure and design of a Neural Network, the modeling of a quadrotor and its dynamics. The full simulator, developed on the MATLAB Simulink environment, used throughout the whole thesis, is also shown. For the guidance and control purposes, a Sliding Mode Controller, used as a reference, it is firstly introduced, and its theory and implementation on the simulator are illustrated. Finally the original controller is introduced, through its novel formulation, and implementation on the model. The effectiveness and robustness of the two controllers are then proven by extensive simulations in all different conditions of external disturbance and faults.
Resumo:
The Neural Networks customized and tested in this thesis (WaldoNet, FlowNet and PatchNet) are a first exploration and approach to the Template Matching task. The possibilities of extension are therefore many and some are proposed below. During my thesis, I have analyzed the functioning of the classical algorithms and adapted with deep learning algorithms. The features extracted from both the template and the query images resemble the keypoints of the SIFT algorithm. Then, instead of similarity function or keypoints matching, WaldoNet and PatchNet use the convolutional layer to compare the features, while FlowNet uses the correlational layer. In addition, I have identified the major challenges of the Template Matching task (affine/non-affine transformations, intensity changes...) and solved them with a careful design of the dataset.
Resumo:
Pervasive and distributed Internet of Things (IoT) devices demand ubiquitous coverage beyond No-man’s land. To satisfy plethora of IoT devices with resilient connectivity, Non-Terrestrial Networks (NTN) will be pivotal to assist and complement terrestrial systems. In a massiveMTC scenario over NTN, characterized by sporadic uplink data reports, all the terminals within a satellite beam shall be served during the short visibility window of the flying platform, thus generating congestion due to simultaneous access attempts of IoT devices on the same radio resource. The more terminals collide, the more average-time it takes to complete an access which is due to the decreased number of successful attempts caused by Back-off commands of legacy methods. A possible countermeasure is represented by Non-Orthogonal Multiple Access scheme, which requires the knowledge of the number of superimposed NPRACH preambles. This work addresses this problem by proposing a Neural Network (NN) algorithm to cope with the uncoordinated random access performed by a prodigious number of Narrowband-IoT devices. Our proposed method classifies the number of colliding users, and for each estimates the Time of Arrival (ToA). The performance assessment, under Line of Sight (LoS) and Non-LoS conditions in sub-urban environments with two different satellite configurations, shows significant benefits of the proposed NN algorithm with respect to traditional methods for the ToA estimation.
Resumo:
Fed-batch fermentation is used to prevent or reduce substrate-associated growth inhibition by controlling nutrient supply. Here we review the advances in control of fed-batch fermentations. Simple exponential feeding and inferential methods are examined, as are newer methods based on fuzzy control and neural networks. Considerable interest has developed in these more advanced methods that hold promise for optimizing fed-batch techniques for complex fermentation systems. (C) 1999 Elsevier Science Inc. All rights reserved.
Resumo:
BACKGROUND: The structure and organisation of ecological interactions within an ecosystem is modified by the evolution and coevolution of the individual species it contains. Understanding how historical conditions have shaped this architecture is vital for understanding system responses to change at scales from the microbial upwards. However, in the absence of a group selection process, the collective behaviours and ecosystem functions exhibited by the whole community cannot be organised or adapted in a Darwinian sense. A long-standing open question thus persists: Are there alternative organising principles that enable us to understand and predict how the coevolution of the component species creates and maintains complex collective behaviours exhibited by the ecosystem as a whole? RESULTS: Here we answer this question by incorporating principles from connectionist learning, a previously unrelated discipline already using well-developed theories on how emergent behaviours arise in simple networks. Specifically, we show conditions where natural selection on ecological interactions is functionally equivalent to a simple type of connectionist learning, 'unsupervised learning', well-known in neural-network models of cognitive systems to produce many non-trivial collective behaviours. Accordingly, we find that a community can self-organise in a well-defined and non-trivial sense without selection at the community level; its organisation can be conditioned by past experience in the same sense as connectionist learning models habituate to stimuli. This conditioning drives the community to form a distributed ecological memory of multiple past states, causing the community to: a) converge to these states from any random initial composition; b) accurately restore historical compositions from small fragments; c) recover a state composition following disturbance; and d) to correctly classify ambiguous initial compositions according to their similarity to learned compositions. We examine how the formation of alternative stable states alters the community's response to changing environmental forcing, and we identify conditions under which the ecosystem exhibits hysteresis with potential for catastrophic regime shifts. CONCLUSIONS: This work highlights the potential of connectionist theory to expand our understanding of evo-eco dynamics and collective ecological behaviours. Within this framework we find that, despite not being a Darwinian unit, ecological communities can behave like connectionist learning systems, creating internal conditions that habituate to past environmental conditions and actively recalling those conditions. REVIEWERS: This article was reviewed by Prof. Ricard V Solé, Universitat Pompeu Fabra, Barcelona and Prof. Rob Knight, University of Colorado, Boulder.
Resumo:
Non-linear functional representation of the aerodynamic response provides a convenient mathematical model for motion-induced unsteady transonic aerodynamic loads response, that accounts for both complex non-linearities and time-history effects. A recent development, based on functional approximation theory, has established a novel functional form; namely, the multi-layer functional. For a large class of non-linear dynamic systems, such multi-layer functional representations can be realised via finite impulse response (FIR) neural networks. Identification of an appropriate FIR neural network model is facilitated by means of a supervised training process in which a limited sample of system input-output data sets is presented to the temporal neural network. The present work describes a procedure for the systematic identification of parameterised neural network models of motion-induced unsteady transonic aerodynamic loads response. The training process is based on a conventional genetic algorithm to optimise the network architecture, combined with a simplified random search algorithm to update weight and bias values. Application of the scheme to representative transonic aerodynamic loads response data for a bidimensional airfoil executing finite-amplitude motion in transonic flow is used to demonstrate the feasibility of the approach. The approach is shown to furnish a satisfactory generalisation property to different motion histories over a range of Mach numbers in the transonic regime.
Resumo:
there has been much research on analyzing various forms of competing risks data. Nevertheless, there are several occasions in survival studies, where the existing models and methodologies are inadequate for the analysis competing risks data. ldentifiabilty problem and various types of and censoring induce more complications in the analysis of competing risks data than in classical survival analysis. Parametric models are not adequate for the analysis of competing risks data since the assumptions about the underlying lifetime distributions may not hold well. Motivated by this, in the present study. we develop some new inference procedures, which are completely distribution free for the analysis of competing risks data.
Resumo:
This paper explores a number of statistical models for predicting the daily stock return volatility of an aggregate of all stocks traded on the NYSE. An application of linear and non-linear Granger causality tests highlights evidence of bidirectional causality, although the relationship is stronger from volatility to volume than the other way around. The out-of-sample forecasting performance of various linear, GARCH, EGARCH, GJR and neural network models of volatility are evaluated and compared. The models are also augmented by the addition of a measure of lagged volume to form more general ex-ante forecasting models. The results indicate that augmenting models of volatility with measures of lagged volume leads only to very modest improvements, if any, in forecasting performance.
Resumo:
The fundamental senses of the human body are: vision, hearing, touch, taste and smell. These senses are the functions that provide our relationship with the environment. The vision serves as a sensory receptor responsible for obtaining information from the outside world that will be sent to the brain. The gaze reflects its attention, intention and interest. Therefore, the estimation of gaze direction, using computer tools, provides a promising alternative to improve the capacity of human-computer interaction, mainly with respect to those people who suffer from motor deficiencies. Thus, the objective of this work is to present a non-intrusive system that basically uses a personal computer and a low cost webcam, combined with the use of digital image processing techniques, Wavelets transforms and pattern recognition, such as artificial neural network models, resulting in a complete system that performs since the image acquisition (including face detection and eye tracking) to the estimation of gaze direction. The obtained results show the feasibility of the proposed system, as well as several feature advantages.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The energy efficiency of buildings should be a goal at the pre-design phase, though the importance of the design variables is often neglected even during the design process. Highlighting the relevance of these design variables, this research studies the relationships of building location variables with the electrical energy consumption of residential units. The following building design parameters are considered: orientation, story height and sky view factor (SVF). The consideration of the SVF as a location variable contributes to the originality of this research. Data of electrical energy consumption and users' profiles were collected and several variables were considered for the development of an Artificial Neural Network model. This model allows the determination of the relative importance of each variable. The results show that the apartments' orientation is the most important design variable for the energy consumption, although the story height and the sky view factor play a fundamental role in that consumption too. We pointed out that building heights above twenty-four meters do not optimize the energy efficiency of the apartments and also that an increasing SVF can influence the energy consumption of an apartment according to their orientation.