807 resultados para Network-based positioning
Resumo:
Quando la probabilità di misurare un particolare valore di una certa quantità varia inversamente come potenza di tale valore, il quantitativo è detto come seguente una power-law, conosciuta anche come legge di Zipf o distribuzione di Pareto. Obiettivo di questa tesi sarà principalmente quello di verificare se il campione esteso di imprese segue la power-law (e se sì, in che limiti). A tale fine si configureranno i dati in un formato di rete monomodale, della quale si studieranno alcune macro-proprietà di struttura a livllo complessivo e con riferimento alle componenti (i singoli subnet distinti) di maggior dimensione. Successivamente si compiranno alcuni approfondimenti sulla struttura fine di alcuni subnet, essenzialmente rivolti ad evidenziare la potenza di unapproccio network-based, anche al fine di rivelare rilevanti proprietà nascoste del sistema economico soggiacente, sempre, ovviamente, nei limiti della modellizzazione adottata. In sintesi, ciò che questo lavoro intende ottenere è lo sviluppo di un approccio alternativo al trattamento dei big data a componente relazionale intrinseca (in questo caso le partecipazioni di capitale), verso la loro conversione in "big knowledge": da un insieme di dati cognitivamente inaccessibili, attraverso la strutturazione dell'informazione in modalità di rete, giungere ad una conoscenza sufficientemente chiara e giustificata.
Resumo:
L’oggetto del lavoro si concentra sull’analisi in chiave giuridica del modello di cooperazione in rete tra le autorità nazionali degli Stati membri nel quadro dello Spazio LSG, allo scopo di valutarne il contributo, le prospettive e il potenziale. La trattazione si suddivide in due parti, precedute da una breve premessa teorica incentrata sull’analisi della nozione di rete e la sua valenza giuridica. La prima parte ricostruisce il percorso di maturazione della cooperazione in rete, dando risalto tanto ai fattori di ordine congiunturale quanto ai fattori giuridici e d’ordine strutturale che sono alla base del processo di retificazione dei settori giustizia e sicurezza. In particolare, vengono elaborati taluni rilievi critici, concernenti l’operatività degli strumenti giuridici che attuano il principio di mutuo riconoscimento e di quelli che danno applicazione al principio di disponibilità delle informazioni. Ciò allo scopo di evidenziare gli ostacoli che, di frequente, impediscono il buon esito delle procedure di cooperazione e di comprendere le potenzialità e le criticità derivanti dall’utilizzo della rete rispetto alla concreta applicazione di tali procedure. La seconda parte si focalizza sull’analisi delle principali reti attive in materia di giustizia e sicurezza, con particolare attenzione ai rispettivi meccanismi di funzionamento. La trattazione si suddivide in due distinte sezioni che si concentrano sulle a) reti che operano a supporto dell’applicazione delle procedure di assistenza giudiziaria e degli strumenti di mutuo riconoscimento e sulle b) reti che operano nel settore della cooperazione informativa e agevolano lo scambio di informazioni operative e tecniche nelle azioni di prevenzione e lotta alla criminalità - specialmente nel settore della protezione dell’economia lecita. La trattazione si conclude con la ricostruzione delle caratteristiche di un modello di rete europea e del ruolo che questo esercita rispetto all’esercizio delle competenze dell’Unione Europea in materia di giustizia e sicurezza.
Resumo:
Many of developing countries are facing crisis in water management due to increasing of population, water scarcity, water contaminations and effects of world economic crisis. Water distribution systems in developing countries are facing many challenges of efficient repair and rehabilitation since the information of water network is very limited, which makes the rehabilitation assessment plans very difficult. Sufficient information with high technology in developed countries makes the assessment for rehabilitation easy. Developing countries have many difficulties to assess the water network causing system failure, deterioration of mains and bad water quality in the network due to pipe corrosion and deterioration. The limited information brought into focus the urgent need to develop economical assessment for rehabilitation of water distribution systems adapted to water utilities. Gaza Strip is subject to a first case study, suffering from severe shortage in the water supply and environmental problems and contamination of underground water resources. This research focuses on improvement of water supply network to reduce the water losses in water network based on limited database using techniques of ArcGIS and commercial water network software (WaterCAD). A new approach for rehabilitation water pipes has been presented in Gaza city case study. Integrated rehabilitation assessment model has been developed for rehabilitation water pipes including three components; hydraulic assessment model, Physical assessment model and Structural assessment model. WaterCAD model has been developed with integrated in ArcGIS to produce the hydraulic assessment model for water network. The model have been designed based on pipe condition assessment with 100 score points as a maximum points for pipe condition. As results from this model, we can indicate that 40% of water pipeline have score points less than 50 points and about 10% of total pipes length have less than 30 score points. By using this model, the rehabilitation plans for each region in Gaza city can be achieved based on available budget and condition of pipes. The second case study is Kuala Lumpur Case from semi-developed countries, which has been used to develop an approach to improve the water network under crucial conditions using, advanced statistical and GIS techniques. Kuala Lumpur (KL) has water losses about 40% and high failure rate, which make severe problem. This case can represent cases in South Asia countries. Kuala Lumpur faced big challenges to reduce the water losses in water network during last 5 years. One of these challenges is high deterioration of asbestos cement (AC) pipes. They need to replace more than 6500 km of AC pipes, which need a huge budget to be achieved. Asbestos cement is subject to deterioration due to various chemical processes that either leach out the cement material or penetrate the concrete to form products that weaken the cement matrix. This case presents an approach for geo-statistical model for modelling pipe failures in a water distribution network. Database of Syabas Company (Kuala Lumpur water company) has been used in developing the model. The statistical models have been calibrated, verified and used to predict failures for both networks and individual pipes. The mathematical formulation developed for failure frequency in Kuala Lumpur was based on different pipeline characteristics, reflecting several factors such as pipe diameter, length, pressure and failure history. Generalized linear model have been applied to predict pipe failures based on District Meter Zone (DMZ) and individual pipe levels. Based on Kuala Lumpur case study, several outputs and implications have been achieved. Correlations between spatial and temporal intervals of pipe failures also have been done using ArcGIS software. Water Pipe Assessment Model (WPAM) has been developed using the analysis of historical pipe failure in Kuala Lumpur which prioritizing the pipe rehabilitation candidates based on ranking system. Frankfurt Water Network in Germany is the third main case study. This case makes an overview for Survival analysis and neural network methods used in water network. Rehabilitation strategies of water pipes have been developed for Frankfurt water network in cooperation with Mainova (Frankfurt Water Company). This thesis also presents a methodology of technical condition assessment of plastic pipes based on simple analysis. This thesis aims to make contribution to improve the prediction of pipe failures in water networks using Geographic Information System (GIS) and Decision Support System (DSS). The output from the technical condition assessment model can be used to estimate future budget needs for rehabilitation and to define pipes with high priority for replacement based on poor condition. rn
Resumo:
This study focused on the effects of socioeconomic exclusivity indicators on college students¿ attitudes toward a hypothetical private liberal arts university. Students enrolled in two undergraduate courses in Education at an elite private liberal arts university in the northeast were randomly presented with one of three versions of an admissions brochure describing a fictitious university. The three versions of the brochure varied in their portrayals of the institution¿s financial exclusivity, ranging from high exclusivity to low exclusivity. Each student was asked to review the brochure and respond to a questionnaire, containing items pertaining to the overall desirability of the institution, as well as its student culture, academic program, campus traditions, and alumni network. Based on Thorstein Veblen¿s theory of the leisure class and Pierre Bourdieu¿s theory of social reproduction, it was hypothesized that students would judge the institution most favorably in all areas under the high exclusivity condition and least favorably under the low exclusivity condition. It was further hypothesized that differences in students¿ ratings of institutional desirability would be mediated by their own financial aid statuses. Results of a two-way multivariate analysis of variance (MANOVA) revealed significant (p < .05) interactive effects of institutional exclusivity and student aid status on the perceived desirability of the academic program and campus traditions of the institution. While recipients of need-based financial aid tended to rate more socioeconomically exclusive institutions more favorably on these two variables, those who were not receiving need-based financial aid tended to rate such institutions less favorably. Implications of the findings for student affairs practice are discussed and recommendations for further research are presented.
Resumo:
The early detection of subjects with probable Alzheimer's disease (AD) is crucial for effective appliance of treatment strategies. Here we explored the ability of a multitude of linear and non-linear classification algorithms to discriminate between the electroencephalograms (EEGs) of patients with varying degree of AD and their age-matched control subjects. Absolute and relative spectral power, distribution of spectral power, and measures of spatial synchronization were calculated from recordings of resting eyes-closed continuous EEGs of 45 healthy controls, 116 patients with mild AD and 81 patients with moderate AD, recruited in two different centers (Stockholm, New York). The applied classification algorithms were: principal component linear discriminant analysis (PC LDA), partial least squares LDA (PLS LDA), principal component logistic regression (PC LR), partial least squares logistic regression (PLS LR), bagging, random forest, support vector machines (SVM) and feed-forward neural network. Based on 10-fold cross-validation runs it could be demonstrated that even tough modern computer-intensive classification algorithms such as random forests, SVM and neural networks show a slight superiority, more classical classification algorithms performed nearly equally well. Using random forests classification a considerable sensitivity of up to 85% and a specificity of 78%, respectively for the test of even only mild AD patients has been reached, whereas for the comparison of moderate AD vs. controls, using SVM and neural networks, values of 89% and 88% for sensitivity and specificity were achieved. Such a remarkable performance proves the value of these classification algorithms for clinical diagnostics.
Resumo:
Building energy meter network, based on per-appliance monitoring system, willbe an important part of the Advanced Metering Infrastructure. Two key issues exist for designing such networks. One is the network structure to be used. The other is the implementation of the network structure on a large amount of small low power devices, and the maintenance of high quality communication when the devices have electric connection with high voltage AC line. The recent advancement of low-power wireless communication makes itself the right candidate for house and building energy network. Among all kinds of wireless solutions, the low speed but highly reliable 802.15.4 radio has been chosen in this design. While many network-layer solutions have been provided on top of 802.15.4, an IPv6 based method is used in this design. 6LOWPAN is the particular protocol which adapts IP on low power personal network radio. In order to extend the network into building area without, a specific network layer routing mechanism-RPL, is included in this design. The fundamental unit of the building energy monitoring system is a smart wall plug. It is consisted of an electricity energy meter, a RF communication module and a low power CPU. The real challenge for designing such a device is its network firmware. In this design, IPv6 is implemented through Contiki operation system. Customize hardware driver and meter application program have been developed on top of the Contiki OS. Some experiments have been done, in order to prove the network ability of this system.
Resumo:
Mobile Mesh Network based In-Transit Visibility (MMN-ITV) system facilitates global real-time tracking capability for the logistics system. In-transit containers form a multi-hop mesh network to forward the tracking information to the nearby sinks, which further deliver the information to the remote control center via satellite. The fundamental challenge to the MMN-ITV system is the energy constraint of the battery-operated containers. Coupled with the unique mobility pattern, cross-MMN behavior, and the large-spanned area, it is necessary to investigate the energy-efficient communication of the MMN-ITV system thoroughly. First of all, this dissertation models the energy-efficient routing under the unique pattern of the cross-MMN behavior. A new modeling approach, pseudo-dynamic modeling approach, is proposed to measure the energy-efficiency of the routing methods in the presence of the cross-MMN behavior. With this approach, it could be identified that the shortest-path routing and the load-balanced routing is energy-efficient in mobile networks and static networks respectively. For the MMN-ITV system with both mobile and static MMNs, an energy-efficient routing method, energy-threshold routing, is proposed to achieve the best tradeoff between them. Secondly, due to the cross-MMN behavior, neighbor discovery is executed frequently to help the new containers join the MMN, hence, consumes similar amount of energy as that of the data communication. By exploiting the unique pattern of the cross-MMN behavior, this dissertation proposes energy-efficient neighbor discovery wakeup schedules to save up to 60% of the energy for neighbor discovery. Vehicular Ad Hoc Networks (VANETs)-based inter-vehicle communications is by now growingly believed to enhance traffic safety and transportation management with low cost. The end-to-end delay is critical for the time-sensitive safety applications in VANETs, and can be a decisive performance metric for VANETs. This dissertation presents a complete analytical model to evaluate the end-to-end delay against the transmission range and the packet arrival rate. This model illustrates a significant end-to-end delay increase from non-saturated networks to saturated networks. It hence suggests that the distributed power control and admission control protocols for VANETs should aim at improving the real-time capacity (the maximum packet generation rate without causing saturation), instead of the delay itself. Based on the above model, it could be determined that adopting uniform transmission range for every vehicle may hinder the delay performance improvement, since it does not allow the coexistence of the short path length and the low interference. Clusters are proposed to configure non-uniform transmission range for the vehicles. Analysis and simulation confirm that such configuration can enhance the real-time capacity. In addition, it provides an improved trade off between the end-to-end delay and the network capacity. A distributed clustering protocol with minimum message overhead is proposed, which achieves low convergence time.
Resumo:
Background Access to health care can be described along four dimensions: geographic accessibility, availability, financial accessibility and acceptability. Geographic accessibility measures how physically accessible resources are for the population, while availability reflects what resources are available and in what amount. Combining these two types of measure into a single index provides a measure of geographic (or spatial) coverage, which is an important measure for assessing the degree of accessibility of a health care network. Results This paper describes the latest version of AccessMod, an extension to the Geographical Information System ArcView 3.×, and provides an example of application of this tool. AccessMod 3 allows one to compute geographic coverage to health care using terrain information and population distribution. Four major types of analysis are available in AccessMod: (1) modeling the coverage of catchment areas linked to an existing health facility network based on travel time, to provide a measure of physical accessibility to health care; (2) modeling geographic coverage according to the availability of services; (3) projecting the coverage of a scaling-up of an existing network; (4) providing information for cost effectiveness analysis when little information about the existing network is available. In addition to integrating travelling time, population distribution and the population coverage capacity specific to each health facility in the network, AccessMod can incorporate the influence of landscape components (e.g. topography, river and road networks, vegetation) that impact travelling time to and from facilities. Topographical constraints can be taken into account through an anisotropic analysis that considers the direction of movement. We provide an example of the application of AccessMod in the southern part of Malawi that shows the influences of the landscape constraints and of the modes of transportation on geographic coverage. Conclusion By incorporating the demand (population) and the supply (capacities of heath care centers), AccessMod provides a unifying tool to efficiently assess the geographic coverage of a network of health care facilities. This tool should be of particular interest to developing countries that have a relatively good geographic information on population distribution, terrain, and health facility locations.
Resumo:
The central assumption in the literature on collaborative networks and policy networks is that political outcomes are affected by a variety of state and nonstate actors. Some of these actors are more powerful than others and can therefore have a considerable effect on decision making. In this article, we seek to provide a structural and institutional explanation for these power differentials in policy networks and support the explanation with empirical evidence. We use a dyadic measure of influence reputation as a proxy for power, and posit that influence reputation over the political outcome is related to vertical integration into the political system by means of formal decision-making authority, and to horizontal integration by means of being well embedded into the policy network. Hence, we argue that actors are perceived as influential because of two complementary factors: (a) their institutional roles and (b) their structural positions in the policy network. Based on temporal and cross-sectional exponential random graph models, we compare five cases about climate, telecommunications, flood prevention, and toxic chemicals politics in Switzerland and Germany. The five networks cover national and local networks at different stages of the policy cycle. The results confirm that institutional and structural drivers seem to have a crucial impact on how an actor is perceived in decision making and implementation and, therefore, their ability to significantly shape outputs and service delivery.
Resumo:
Service providers make use of cost-effective wireless solutions to identify, localize, and possibly track users using their carried MDs to support added services, such as geo-advertisement, security, and management. Indoor and outdoor hotspot areas play a significant role for such services. However, GPS does not work in many of these areas. To solve this problem, service providers leverage available indoor radio technologies, such as WiFi, GSM, and LTE, to identify and localize users. We focus our research on passive services provided by third parties, which are responsible for (i) data acquisition and (ii) processing, and network-based services, where (i) and (ii) are done inside the serving network. For better understanding of parameters that affect indoor localization, we investigate several factors that affect indoor signal propagation for both Bluetooth and WiFi technologies. For GSM-based passive services, we developed first a data acquisition module: a GSM receiver that can overhear GSM uplink messages transmitted by MDs while being invisible. A set of optimizations were made for the receiver components to support wideband capturing of the GSM spectrum while operating in real-time. Processing the wide-spectrum of the GSM is possible using a proposed distributed processing approach over an IP network. Then, to overcome the lack of information about tracked devices’ radio settings, we developed two novel localization algorithms that rely on proximity-based solutions to estimate in real environments devices’ locations. Given the challenging indoor environment on radio signals, such as NLOS reception and multipath propagation, we developed an original algorithm to detect and remove contaminated radio signals before being fed to the localization algorithm. To improve the localization algorithm, we extended our work with a hybrid based approach that uses both WiFi and GSM interfaces to localize users. For network-based services, we used a software implementation of a LTE base station to develop our algorithms, which characterize the indoor environment before applying the localization algorithm. Experiments were conducted without any special hardware, any prior knowledge of the indoor layout or any offline calibration of the system.
Resumo:
OBJECTIVES To describe the HIV care cascade for Switzerland in the year 2012. DESIGN/METHODS Six levels were defined: (i) HIV-infected, (ii) HIV-diagnosed, (iii) linked to care, (iv) retained in care, (v) on antiretroviral treatment (ART), and (vi) with suppressed viral load (VL). We used data from the Swiss HIV Cohort Study (SHCS) complemented by a nationwide survey among SHCS physicians to estimate the number of HIV-patients not registered in the cohort. We also used Swiss ART sales data to estimate the number of patients treated outside the SHCS network. Based on the number of patients retained in care, we inferred the estimates for levels (i) to (iii) from previously published data. RESULTS We estimate that (i) 15,200 HIV-infected individuals lived in Switzerland in 2012 (margins of uncertainty, 13,400-19,300). Of those, (ii) 12,300 (81%) were diagnosed, (iii) 12,200 (80%) linked, and (iv) 11,900 (79%) retained in care. Broadly based on SHCS network data, (v) 10,800 (71%) patients were receiving ART, and (vi) 10,400 (68%) had suppressed (<200 copies/ml) VLs. The vast majority (95%) of patients retained in care were followed within the SHCS network, with 76% registered in the cohort. CONCLUSIONS Our estimate for HIV-infected individuals in Switzerland is substantially lower than previously reported, halving previous national HIV prevalence estimates to 0.2%. In Switzerland in 2012, 91% of patients in care were receiving ART, and 96% of patients on ART had suppressed VL, meeting recent UNAIDS/WHO targets.
Resumo:
Service providers make use of cost-effective wireless solutions to identify, localize, and possibly track users using their carried MDs to support added services, such as geo-advertisement, security, and management. Indoor and outdoor hotspot areas play a significant role for such services. However, GPS does not work in many of these areas. To solve this problem, service providers leverage available indoor radio technologies, such as WiFi, GSM, and LTE, to identify and localize users. We focus our research on passive services provided by third parties, which are responsible for (i) data acquisition and (ii) processing, and network-based services, where (i) and (ii) are done inside the serving network. For better understanding of parameters that affect indoor localization, we investigate several factors that affect indoor signal propagation for both Bluetooth and WiFi technologies. For GSM-based passive services, we developed first a data acquisition module: a GSM receiver that can overhear GSM uplink messages transmitted by MDs while being invisible. A set of optimizations were made for the receiver components to support wideband capturing of the GSM spectrum while operating in real-time. Processing the wide-spectrum of the GSM is possible using a proposed distributed processing approach over an IP network. Then, to overcome the lack of information about tracked devices’ radio settings, we developed two novel localization algorithms that rely on proximity-based solutions to estimate in real environments devices’ locations. Given the challenging indoor environment on radio signals, such as NLOS reception and multipath propagation, we developed an original algorithm to detect and remove contaminated radio signals before being fed to the localization algorithm. To improve the localization algorithm, we extended our work with a hybrid based approach that uses both WiFi and GSM interfaces to localize users. For network-based services, we used a software implementation of a LTE base station to develop our algorithms, which characterize the indoor environment before applying the localization algorithm. Experiments were conducted without any special hardware, any prior knowledge of the indoor layout or any offline calibration of the system.
Resumo:
The metabolic network of a cell represents the catabolic and anabolic reactions that interconvert small molecules (metabolites) through the activity of enzymes, transporters and non-catalyzed chemical reactions. Our understanding of individual metabolic networks is increasing as we learn more about the enzymes that are active in particular cells under particular conditions and as technologies advance to allow detailed measurements of the cellular metabolome. Metabolic network databases are of increasing importance in allowing us to contextualise data sets emerging from transcriptomic, proteomic and metabolomic experiments. Here we present a dynamic database, TrypanoCyc (http://www.metexplore.fr/trypanocyc/), which describes the generic and condition-specific metabolic network of Trypanosoma brucei, a parasitic protozoan responsible for human and animal African trypanosomiasis. In addition to enabling navigation through the BioCyc-based TrypanoCyc interface, we have also implemented a network-based representation of the information through MetExplore, yielding a novel environment in which to visualise the metabolism of this important parasite.
Resumo:
Mechanisms that allow pathogens to colonize the host are not the product of isolated genes, but instead emerge from the concerted operation of regulatory networks. Therefore, identifying components and the systemic behavior of networks is necessary to a better understanding of gene regulation and pathogenesis. To this end, I have developed systems biology approaches to study transcriptional and post-transcriptional gene regulation in bacteria, with an emphasis in the human pathogen Mycobacterium tuberculosis (Mtb). First, I developed a network response method to identify parts of the Mtb global transcriptional regulatory network utilized by the pathogen to counteract phagosomal stresses and survive within resting macrophages. As a result, the method unveiled transcriptional regulators and associated regulons utilized by Mtb to establish a successful infection of macrophages throughout the first 14 days of infection. Additionally, this network-based analysis identified the production of Fe-S proteins coupled to lipid metabolism through the alkane hydroxylase complex as a possible strategy employed by Mtb to survive in the host. Second, I developed a network inference method to infer the small non-coding RNA (sRNA) regulatory network in Mtb. The method identifies sRNA-mRNA interactions by integrating a priori knowledge of possible binding sites with structure-driven identification of binding sites. The reconstructed network was useful to predict functional roles for the multitude of sRNAs recently discovered in the pathogen, being that several sRNAs were postulated to be involved in virulence-related processes. Finally, I applied a combined experimental and computational approach to study post-transcriptional repression mediated by small non-coding RNAs in bacteria. Specifically, a probabilistic ranking methodology termed rank-conciliation was developed to infer sRNA-mRNA interactions based on multiple types of data. The method was shown to improve target prediction in Escherichia coli, and therefore is useful to prioritize candidate targets for experimental validation.