1000 resultados para Nervo laríngeo superior


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Durante los últimos tres años, hemos desarrollado, en el marco del presente proyecto de investigación, una profundización en las condiciones y las estrategias armadas en torno al Espacio Europeo de Educación Superior, y sus posibles correlatos en los diferentes ensayos aplicados en América Latina, para potenciar desde el espacio educativo superior una mayor integración de sistemas y un aumento de la calidad del servicio universitario, junto a una profundización de las políticas de investigación científica y de gestión del conocimiento. Y todo ello para ahondar el compromiso social y la calidad de los regímenes democráticos de la región, con mayores grados de relevancia en el respeto y la promoción de los derechos humanos y de las políticas de igualdad y de justicia. En esta segunda etapa del proyecto, generaremos una aproximación específica a una de las estrategias más relevantes en las políticas públicas tendientes a mayores grados de democratización e igualitarismo: las iniciativas que propenden hacia la equidad de género, un horizonte objetivo para el cual los planes y programas educativos tienen una importancia crucial, tanto en el aseguramiento del éxito como en la perdurabilidad de esos avances en torno al rescate y a la igualdad del rol social de la mujer. En este sentido, nuestra región, y el Espacio Latinoamericano de Educación Superior en su conjunto, pueden aprovechar muy eficazmente la apropiación y la adecuación de algunas de las políticas igualitaristas, de equidad y de discriminación positiva ya experimentadas en el entorno del espacio europeo, que sigue siendo el referente al que se aspira. Junto a las estrategias operativas, ese Espacio Latinoamericano debería atender a la importancia relevante que tienen los reclamos de identidad de las minorías, especialmente los que impulsan la igualación efectiva de derechos para ambos sexos, propugnando un rescate histórico del papel social de las mujeres. Esta nueva agenda podría potenciarse mediante la cooperación interuniversitaria Europa-Iberoamérica, así como del desarrollo de estudios académicos sobre las características particulares de articulación de los temas que comprende (como la equidad de género), teniendo como marco referencial el sistema educativo superior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente trabajo tiene el propósito de describir analíticamente la experiencia de integración efectuada por cátedras de la Carrera del Profesorado Universitario cuya finalidad es formar en educación a profesionales que se desempeñan en el Nivel Secundario y Superior en Argentina. Las cátedras desde las que se realiza la experiencia son Investigación Educativa, Didáctica Especial, Historia de la Educación y Sociología de la Educación del Profesorado Universitario y la Licenciatura en Cs. de la Educación. La propuesta de las cátedras requirió, en etapas anteriores, de algunas decisiones tales como: ¿Desde qué perspectivas generar la integración? ¿Cuáles son las posibilidades de integrar? ¿Qué decisiones sobre la enseñanza y la evaluación supone asumir en este proyecto? ¿Cómo se efectúa el seguimiento de los alumnos?, entre otras. La construcción del problema de investigación demanda de la utilización de diferentes estrategias pedagógicas. De esta manera, se avanza desde esquemas amplios respecto a la temática a investigar para orientar- en un trabajo sostenido- a la delimitación en tiempo, espacio y contenido. En experiencias anteriores, durante el proceso de elaboración del proyecto, los Ejes problemáticos seleccionados predominantes surgen en la enseñanza universitaria caracterizada por diagnósticos de prácticas de docencia aisladas con la particularidad de no poder pensar la posibilidad de interactuar con otros espacios curriculares y establecer consensos. Aquellos trabajos que optan por inscribir sus problemáticas en el contexto institucional lo hacen en correlación con experiencias de gestión institucional. Las temáticas más seleccionadas están relacionadas con Ciencias de la Salud en el contexto universitario y, en menor grado, Ciencias Sociales y el nivel secundario. Estos estudiantes – docentes universitarios y docentes de escuelas secundarias - intentan reflexionar aspectos nodales de la formación docente y sus prácticas cotidianas vinculadas a la integración escolar, el compromiso con la enseñanza a través de problematizaciones variadas que abarcan desde qué se enseña, cómo y por qué en Ciencias Sociales hasta redefiniciones de herramientas e instrumentos de evaluación de prácticas finales obligatorias, en función de las prácticas asistenciales; el análisis y reformulación del instrumento de evaluación del posgrado; tensiones entre teoría y práctica y su preocupación por la evaluación para mejorar las estrategias de enseñanza; entre otros.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FUNDAMENTO: O número crescente de crianças com cardiopatias congênitas em evolução demanda maior preparo dos profissionais e das instituições que as manuseiam. OBJETIVO: Descrever o perfil dos pacientes com idade superior a 16 anos com cardiopatia congênita operados e analisar os fatores de risco preditivos de mortalidade hospitalar. MÉTODOS: Mil, quinhentos e vinte pacientes (idade média 27 ± 13 anos) foram operados entre janeiro de 1986 e dezembro de 2010. Foram realizadas análise descritiva do perfil epidemiológico da população estudada e análise dos fatores de risco para mortalidade hospitalar, considerando escore de complexidade, ano em que a cirurgia foi realizada, procedimento realizado pelo cirurgião pediátrico ou não e presença de reoperação. RESULTADOS: Ocorreu um crescimento expressivo no número de casos a partir do ano 2000. A média do escore de complexidade foi 5,4 e os defeitos septais corresponderam a 45% dos casos. A mortalidade geral foi 7,7% e o maior número de procedimentos (973 ou 61,9%) com maior complexidade foi realizado por cirurgiões pediátricos. Complexidade (OR 1,5), reoperação (OR 2,17) e cirurgião pediátrico (OR 0,28) foram fatores de risco independentes que influenciaram a mortalidade. A análise multivariada mostrou que o ano em que a cirurgia foi realizada (OR 1,03), a complexidade (OR 1,44) e o cirurgião pediátrico (OR 0,28) influenciaram no resultado. CONCLUSÃO: Observa-se um número crescente de pacientes com idade superior a 16 anos e que, apesar do grande número de casos simples, os mais complexos foram encaminhados para os cirurgiões pediátricos, que apresentaram menor mortalidade, em especial nos anos mais recentes. (Arq Bras Cardiol. 2012; [online].ahead print, PP.0-0)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Em cinco árvores do parque da Escola Superior de Agricultura "Luiz de Queiroz", pertencentes às espécies, Aspidospernia polyneuron Müell, Cariniana estrellensis Raddi, Paratecoma peroba Record, Aleurites moluccana Wield e Piptadenia rígida, foram coletadas três amostras constituídas de folhas consideradas novas, medianas e velhas, aparentemente. As 15 amostras obtidas foram lavadas para micronutrientes, secadas em estufa a aproximadamente 70ºC, moídas e analisadas sob três repetições, quanto a seus teores em N, R, K, Ca, Mg, Cu, Fe, Mn e Zn. O delineamento experimental utilizado foi o inteiramente casualizado, e as diferenças estatísticas significativas entre as médias dos vários tratamentos, detectadas pela análise de variância, foram comparadas através do teste Tukey. Os seguintes contrastes puderam ser observados : a) Pelo menos uma árvore dentre as cinco, diferiu das demais quanto à concentração relativa de cada um dos nutrientes considerados . b) Em todas as árvores estudadas, com exceção da pertencente à espécie Aleurites moluccana (nogueira de Iguape), os nutrientes constatados em maior concentração foram o N e o Ca, enquanto que, na nogueira detectou-se maior concentração de N e K. c) Piptadenia rígida (angico branco) e Cariniana estrellensis (jequitibá branco) mostraram concentrações particularmente elevadas de Fe. d) Genericamente, as folhas novas das essências observadas apresentaram tendência de possuírem maiores concentrações de N, R, K e Cu, enquanto as folhas velhas mostraram maiores concentrações de Ca e Mn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O parque da ESALQ, implantado no início do século pelo arquiteto paisagista Arsênio Puttemans, tem hoje grande valor científico e histórico, além de se constituir na principal área verde da cidade de Piracicaba. Visando o conhecimento detalhado da vegetação arbustivo-arbórea. Foram plaqueados, mapeados, medidos (altura e DAP) e identificados todos os indivíduos com DAP maior ou igual a 5 cm. Os dados foram analisados em computador, usando o programa FITOPAC, de autoria de Shepherd, G.J. (UNICAMP). Neste trabalho estão apresentados os resultados de três canteiros. O primeiro, ocupando uma área de 382 m², teve amostradas 24 espécies distribuídas por 13 famílias, num total de 88 indivíduos. O valor do índice de diversidade H' foi de 2,53, sendo que a espécie de maior destaque no IVC foi Aspidosperma ramiflorum Mull.Arg.. O segundo canteiro, ocupando uma área de 2694 m², teve amostradas 21 famílias representadas por 33 espécies, num total de 212 indivíduos. O valor do índice de diversidade H' foi de 2,68 e destacaram-se duas espécies na ordenação do IVC: Esenbeckia leiocarpa Engl, e Tipuana tipu (Benth.) O.Kuntze. O terceiro canteiro, ocupando 3786 m², teve amostradas 28 famílias, representadas por 66 espécies e 419 indivíduos. O índice H' obtido foi de 3,50. Neste canteiro as espécies com destaque na ordenação do IVC foram: Aspidosperma cylindrocarpum Mull.Arg. , Machaerium villosum Vog., Centrolobium tomentosum Guill. e Myrcia laurotteana Camb.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dentre os organismos registrados para águas profundas (> 100 m) no sul do Brasil, podemos destacar os corais azooxantelados pertencentes a ordem Scleractinia. Através de análises estatísticas, identificação de espécimes depositados em coleções científicas, e compilação de todos os registros pretéritos destes cnidarios ocorrentes no sul e parte do sudeste do Brasil, foi possível constatar que as coordenadas abrangidas no presente estudo representam uma área de transição entre os corais azooxantelados ocorrentes ao norte e as espécies mais características das zonas polares, principalmente em relação às espécies solitárias. Com a análise da distribuição batimétrica, foi observado um significativo aumento no número de espécies entre o setor de plataforma externa e 500 m de profundidade. Finalizando, foi realizada a análise de agrupamento, o que permitiu discriminar a formação de 6 biótopos das associações de corais azooxantelados para a área de estudo. Desta forma, apresentamos a primeira tentativa de se compreender a distribuição desta pouco conhecida fauna da plataforma e talude continental superior, entre 24ºS e 34ºS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No presente estudo é descrita a biologia reprodutiva de uma população de Astyanax henseli Melo & Buckup, 2006 do curso superior do rio dos Sinos, Caraá, Rio Grande do Sul, Brasil. Foram analisados 336 exemplares, sendo 169 machos, 154 fêmeas e 13 cujo sexo não foi possível ser determinado. O período reprodutivo teve aproximadamente cinco meses de duração, ocorrendo entre agosto e dezembro, com pico do índice gonadossomático (IGS) em outubro, correspondendo ao final do inverno e a primavera no hemisfério sul. Não houve correlação estatisticamente significativa do IGS com os fatores abióticos (temperatura, precipitação e fotoperíodo). No entanto, sugere-se que estes fatores estejam atuando como desencadeadores da maturação gonadal. Fatores bióticos como o índice de repleção estomacal (IR) e índice hepatossomático (IHS), também não mostraram correlação estatisticamente significativa com o IGS. Apesar disso, os valores de IR indicam que A. henseli continua se alimentando ativamente durante o período reprodutivo, enquanto que os baixos valores de IHS durante do pico reprodutivo sugerem um maior gasto das reservas hepáticas neste período. A proporção sexual de 1:1 foi encontrada ao longo dos meses do ano, nas classes de comprimento e na população como um todo. O comprimento de primeira maturação gonadal foi estabelecido em 69 mm para os machos e 60 mm para as fêmeas. A média da fecundidade absoluta foi de 3.038 ovócitos e a da fecundidade relativa 0,13 ovócitos mg-1. O desenvolvimento ovocitário indicou uma desova total.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I - No Bradypus tridactylus os X, direito e esquerdo, reunem-se em alça pré-esophageana. II - O nivel de formação desta alça variou nos dois casos estudados pelo autor, assim como a disposição dos ramos que della partiam. III - Ambos devem, pois, concorrer á constituição das rêdes anastomoticas terminaes vago-orthosympathicas. IV - Foi impossivel ao autor, mesmo com o auxilio de lentes, individualizar fibras vagaes na continuidade da intricada malha nervosa aortico-visceral, dependente do plexo solar.