975 resultados para Nearby stars


Relevância:

20.00% 20.00%

Publicador:

Resumo:

MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is an optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) designed for the GTC 10.4 m telescope in La Palma. MEGARA will be a 3rd generation instrument for GTC. It is led by the University Complutense of Madrid with the collaboration of INAOE, IAA, UPM and comprises more than 50 researchers from a large number of institutions worldwide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present results from the Spitzer Infrared Spectrograph spectral mapping observations of 15 local luminous infrared galaxies (LIRGs). In this paper, we investigate the spatial variations of the mid-IR emission which includes fine structure lines, molecular hydrogen lines, polycyclic aromatic features (PAHs), continuum emission, and the 9.7 μm silicate feature. We also compare the nuclear and integrated spectra. We find that the star formation takes place in extended regions (several kpc) as probed by the PAH emission, as well as the [Ne II]12.81 μm and [Ne III]15.56 μm emissions. The behavior of the integrated PAH emission and 9.7 μm silicate feature is similar to that of local starburst galaxies. We also find that the minima of the [Ne III]15.56 μm/[Ne II]12.81 μm ratio tends to be located at the nuclei and its value is lower than that of H II regions in our LIRGs and nearby galaxies. It is likely that increased densities in the nuclei of LIRGs are responsible for the smaller nuclear [Ne III]15.56 μm/[Ne II]12.81 μm ratios. This includes the possibility that some of the most massive stars in the nuclei are still embedded in ultracompact H II regions. In a large fraction of our sample, the 11.3 μm PAH emission appears more extended than the dust 5.5 μm continuum emission. We find a dependency of the 11.3 μm PAH/7.7 μm PAH and [Ne II]12.81 μm/11.3 μm PAH ratios with the age of the stellar populations. Smaller and larger ratios, respectively, indicate recent star formation. The estimated warm (300 K

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultraviolet (UV) nonionizing continuum and mid-infrared (IR) emission constitute the basis of two widely used star formation (SF) indicators at intermediate and high redshifts. We study 2430 galaxies with z < 1.4 in the Extended Groth Strip with deep MIPS 24 μm observations from FIDEL, spectroscopy from DEEP2, and UV, optical, and near-IR photometry from the AEGIS. The data are coupled with dust-reddened stellar population models and Bayesian spectral energy distribution (SED) fitting to estimate dust-corrected star formation rates (SFRs). In order to probe the dust heating from stellar populations of various ages, the derived SFRs were averaged over various timescales—from 100 Myr for "current" SFR (corresponding to young stars) to 1-3 Gyr for long-timescale SFRs (corresponding to the light-weighted age of the dominant stellar populations). These SED-based UV/optical SFRs are compared to total IR luminosities extrapolated from 24 μm observations, corresponding to 10-18 μm rest frame. The total IR luminosities are in the range of normal star-forming galaxies and luminous IR galaxies (10^10-10^12 L_☉). We show that the IR luminosity can be estimated from the UV and optical photometry to within a factor of 2, implying that most z < 1.4 galaxies are not optically thick. We find that for the blue, actively star-forming galaxies the correlation between the IR luminosity and the UV/optical SFR shows a decrease in scatter when going from shorter to longer SFR-averaging timescales. We interpret this as the greater role of intermediate age stellar populations in heating the dust than what is typically assumed. Equivalently, we observe that the IR luminosity is better correlated with dust-corrected optical luminosity than with dust-corrected UV light. We find that this holds over the entire redshift range. Many so-called green valley galaxies are simply dust-obscured actively star-forming galaxies. However, there exist 24 μm detected galaxies, some with L_IR>10^11 L_☉, yet with little current SF. For them a reasonable amount of dust absorption of stellar light (but presumably higher than in nearby early-type galaxies) is sufficient to produce the observed levels of IR, which includes a large contribution from intermediate and old stellar populations. In our sample, which contains very few ultraluminous IR galaxies, optical and X-ray active galactic nuclei do not contribute on average more than ~50% to the mid-IR luminosity, and we see no evidence for a large population of "IR excess" galaxies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the stellar calibrator sample and the conversion from instrumental to physical units for the 24 μm channel of the Multiband Imaging Photometer for Spitzer (MIPS). The primary calibrators are A stars, and the calibration factor based on those stars is 4.54 × 10^-2 MJy sr^–1 (DN/s)^–1, with a nominal uncertainty of 2%. We discuss the data reduction procedures required to attain this accuracy; without these procedures, the calibration factor obtained using the automated pipeline at the Spitzer Science Center is 1.6% ± 0.6% lower. We extend this work to predict 24 μm flux densities for a sample of 238 stars that covers a larger range of flux densities and spectral types. We present a total of 348 measurements of 141 stars at 24 μm. This sample covers a factor of ~460 in 24 μm flux density, from 8.6 mJy up to 4.0 Jy. We show that the calibration is linear over that range with respect to target flux and background level. The calibration is based on observations made using 3 s exposures; a preliminary analysis shows that the calibration factor may be 1% and 2% lower for 10 and 30 s exposures, respectively. We also demonstrate that the calibration is very stable: over the course of the mission, repeated measurements of our routine calibrator, HD 159330, show a rms scatter of only 0.4%. Finally, we show that the point-spread function (PSF) is well measured and allows us to calibrate extended sources accurately; Infrared Astronomy Satellite (IRAS) and MIPS measurements of a sample of nearby galaxies are identical within the uncertainties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.