963 resultados para Navigational channels
Resumo:
Oxaliplatin, an effective cytotoxic treatment in combination with 5-fluorouracil for colorectal cancer, is associated with sensory, motor and autonomic neurotoxicity. Motor symptoms include hyperexcitability while autonomic effects include urinary retention, but the cause of these side-effects is unknown. We examined the effects on motor nerve function in the mouse hemidiaphragm and on the autonomic system in the vas deferens. In the mouse diaphragm, oxaliplatin (0.5 mM) induced multiple endplate potentials (EPPs) following a single stimulus, and was associated with an increase in spontaneous miniature EPP frequency. In the vas deferens, spontaneous excitatory junction potential frequency was increased after 30 min exposure to oxaliplatin; no changes in resting Ca(2+) concentration in nerve terminal varicosities were observed, and recovery after stimuli trains was unaffected.In both tissues, an oxaliplatin-induced increase in spontaneous activity was prevented by the voltage-gated Na(+) channel blocker tetrodotoxin (TTX). Carbamazepine (0.3 mM) also prevented multiple EPPs and the increase in spontaneous activity in both tissues. In diaphragm, beta-pompilidotoxin (100 microM), which slows Na(+) channel inactivation, induced multiple EPPs similar to oxaliplatin's effect. By contrast, blockers of K(+) channels (4-aminopyridine and apamin) did not replicate oxaliplatin-induced hyperexcitability in the diaphragm. The prevention of hyperexcitability by TTX blockade implies that oxaliplatin acts on nerve conduction rather than by effecting repolarisation. The similarity between beta-pompilidotoxin and oxaliplatin suggests that alteration of voltage-gated Na(+) channel kinetics is likely to underlie the acute neurotoxic actions of oxaliplatin.
Resumo:
Calculations are reported for positronium (Ps) scattering by atomic hydrogen (H) in the energy range 0-6.5 eV in a coupled- pseudostate approximation in which excitation and ionization channels of both the Ps and the H are taken into account. The approximation contains an accurate representation of the van der Waals coefficient. Results are presented for phase shifts, scattering lengths, effective ranges, and various cross sections including partial wave, total, and ortho-para conversion cross sections. An analysis of the possible spin transitions is provided and the energy of the positronium hydride (PsH) bound state is determined. Substantial differences are found from earlier work within the frozen target approximation, now clearly confirming the importance of target excitation channels. Good agreement is obtained with recent calculations of S-wave phase shifts and scattering lengths using the stabilization method. Convergence to the exact binding energy for PsH appears to be slow. Resonances corresponding to unstable states of the positron orbiting H- are seen in the electronic spin singlet partial waves. The importance of the H- formation channel is discussed.
Resumo:
In this paper we concentrate on the direct semi-blind spatial equalizer design for MIMO systems with Rayleigh fading channels. Our aim is to develop an algorithm which can outperform the classical training based method with the same training information used, and avoid the problems of low convergence speed and local minima due to pure blind methods. A general semi-blind cost function is first constructed which incorporates both the training information from the known data and some kind of higher order statistics (HOS) from the unknown sequence. Then, based on the developed cost function, we propose two semi-blind iterative and adaptive algorithms to find the desired spatial equalizer. To further improve the performance and convergence speed of the proposed adaptive method, we propose a technique to find the optimal choice of step size. Simulation results demonstrate the performance of the proposed algorithms and comparable schemes.