936 resultados para Natural gas Hydrates


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The utilisation of biofuels in gas turbines is a promising alternative to fossil fuels for power generation. It would lead to significant reduction of CO2 emissions using an existing combustion technology, although significant changes seem to be needed and further technological development is necessary. The goal of this work is to perform energy and exergy analyses of the behaviour of gas turbines fired with biogas, ethanol and synthesis gas (bio-syngas), compared with natural gas. The global energy transformation process (i.e. from biomass to electricity) has also been studied. Furthermore, the potential reduction of CO2 emissions attained by the use of biofuels has been determined, considering the restrictions regarding biomass availability. Two different simulation tools have been used to accomplish the aims of this work. The results suggest a high interest and the technical viability of the use of Biomass Integrated Gasification Combined Cycle (BIGCC) systems for large scale power generation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Este proyecto trata sobre la gestión del boil-off gas, o BOG (vapor de gas natural que se produce en las instalaciones de gas natural licuado de las plantas de regasificación), generado en la planta de regasificación de Gas Natural Licuado de Cartagena, tanto en las situaciones en las que se opera por debajo del mínimo técnico, como en las cargas y descargas de buques, en las cuales se ha de gestionar una cantidad del boil-off adicional. Para recuperar el boil-off, las plantas cuentan con un relicuador (intercambiador de calor) en el que el BOG es relicuado por el GNL que se envía a los vaporizadores para ser regasificado y emitido a la red. De forma complementaria cuentan también con una antorcha/venteo donde se quema el exceso de boil-off que no puede ser tratado por el relicuador. Se procede a un análisis de la situación actual, y de cómo la baja demanda de regasificación dificulta la gestión del boil-off. Se simula el proceso de relicuación actual en distintas situaciones de operación. Ante la situación de baja demanda, ha aumentado considerablemente el número de días en los que las plantas españolas en general, y la planta de Cartagena en particular, operan por debajo del mínimo técnico, que es el nivel de producción mínimo para recuperar todo el boil-off generado en cualquier situación de operación al tiempo que mantiene en frío todas las instalaciones, y garantiza el 100% de disponibilidad inmediata del resto de los equipos en condiciones de seguridad de funcionamiento estable. Esta situación supone inconvenientes tanto operativos como medioambientales y acarrea mayores costes económicos, a los cuales da solución el presente proyecto, decidiendo qué alternativa técnica es la más adecuada y definiéndola. Abstract This project is about the management of the boil-off gas (BOG), natural vapour gas that is produced in liquefied natural gas (LNG) regasification plants. Specifically, the study is focused on the LNG regasification plant located in Cartagena, when it operates both below the technical minimum level of regasification and in the loading/unloading of LNG carriers, situations when it is needed to handle additional BOG. In order to make the most of BOG, the plants have a re-condenser (heat exchanger). Here, the BOG is re-liquefied by the LNG that is submitted to the vaporizers and delivered to the grid. The plants also have a flare/vent where the excess of BOG that cannot be treated by the re-condenser is burned. An analysis of the current situation of the demand is performed, evaluating how low markets demand for regasification difficult the BOG management. Besides, it is simulated the current re-liquefaction operating in different environments. Due to the reduction of the demand for natural gas, the periods when Spanish LNG regasification plants (and particularly the factory of Cartagena) are operating below the technical minimum level of regasification are more usual. This level is the minimum production to recover all the BOG generated in any operating situation while maintaining cold all facilities, fully guaranteeing the immediate availability from other equipment in a safely and stable operation. This situation carries both operational and environmental drawbacks, and leads to higher economic costs. This project aims to solve this problem, presenting several technical solutions and deciding which is the most appropriate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Este proyecto pretende ofrecer una visión general de una de las tecnologías más actuales de recuperación de gas en formaciones no convencionales: fracturación hidráulica o “fracking”. El proyecto está motivado por la necesidad de responder a diferentes cuestiones sobre los efectos ambientales, sociales y en la salud humana derivados de la utilización de esa tecnología. Ofrece, además, una descripción del proceso y utilización de la tecnología haciendo especial mención de los riesgos inherentes de su uso, aunque también se intenta establecer una vía de aceptación para su desarrollo cuyo fin último, a parte de los beneficios económicos de quienes la usan, es el de posibilitar la transición hacia el uso de unos recursos (energías fósiles de extracción no convencional) que requieren de dichas técnicas para mantener, a lo largo del tiempo, el suministro de una energía que se supone más respetuosa con el medio ambiente: el gas natural. En primer lugar se expone, a modo introductorio, la necesidad de utilización de nuevas técnicas de estimulación de pozos y su utilización para satisfacer las necesidades energéticas mundiales en los próximos años. A continuación se hace una revisión del marco regulatorio aplicable al gas no convencional. Seguidamente, se hace una descripción de los recursos y fuentes no convencionales de gas y la descripción del proceso de fracturación hidráulica. Se analizan los incidentes relacionados con su desarrollo y las posibilidades y mecanismos que pueden adoptarse para reducirlos. Finalmente, se proponen vías alternativas basadas en las mejores técnicas aplicables al uso de la tecnología, cuya finalidad sea la mayor consideración ambiental posible y el menor riesgo posible en la salud de las personas. ABSTRACT This project aims to provide an overview of the latest technologies in gas recovery unconventional formations: hydraulic fracturing or "fracking". The project is motivated by the need to respond to various questions on the environmental, social and human health arising from the use of this technology. It also offers a description of the process and use of technology with special mention of the inherent risks of their use, but also tries to establish a path of acceptance for development whose ultimate goal, apart from the economic benefits of those who use is of enabling the transition to the use of certain resources (fossil energy extraction unconventional) which require such techniques to maintain, over time, of an energy supply which is more environmentally friendly: natural gas. First discussed the need to use new well stimulation techniques and their use to meet the world's energy needs in the coming years. Below is a review of the regulatory framework applicable to unconventional gas. Next, there is a description of resources and unconventional sources of gas, and the description of the process of hydraulic fracturing. We analyze the incidents related to its development and the possibilities and mechanisms that can be taken to reduce them. Finally, we suggest alternative routes based on the best techniques applicable to the use of technology, aiming at the highest possible environmental consideration and the least possible risk to the health of people.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hasta ahora, la gran mayoría de los recursos explotados de gas natural procedían de acumulaciones convencionales de gas aislado y de gas asociado y disuelto en el petróleo. Sin embargo, el gas natural se encuentra también en yacimientos que, debido a su baja porosidad y permeabilidad, tienen unas características que hacen que hasta muy recientemente no hayan sido económicamente rentables y que sólo puedan ser explotados mediante técnicas no convencionales, dando lugar al denominado gas no convencional. Las técnicas utilizadas para su extracción son la fracturación hidráulica o “fracking” y la perforación horizontal. Entre los diversos tipos de gas no convencional, es de prever que el gas de pizarra sea el que sufra mayor desarrollo a medio plazo en nuestro país, por lo que se están generando grandes debates, debido al riesgo de contaminación de las aguas superficiales y subterráneas del entorno, provocados por la elevada cantidad de agua utilizada, los aditivos empleados, los fluidos de retorno, por la alteración del medio físico, así como por la dificultad de monitorización de estos procesos. En este proyecto se identifican los riesgos ambientales y sanitarios asociados a la extracción de gas no convencional. El trabajo se basa principalmente en experiencias ocurridas en países donde el fracking se ha convertido en una práctica habitual. Se trata además de establecer las bases necesarias para la estimación de la vulnerabilidad de los acuíferos frente a la contaminación inducida por la fracturación hidráulica. Abstract Until now, most of the natural gas resources exploited were from isolated conventional gas accumulations and associated and dissolved gas in oil. However, the natural gas is also in reservoirs that, due to their low porosity and permeability, have characteristics that make until recently not been economically profitable and can be exploited only by unconventional techniques, leading to the so called unconventional gas. The techniques used for extraction are hydraulic fracturing or "fracking" and horizontal drilling. Among the various types of unconventional gas, it is expected that shale gas is the suffering greater medium-term development in our country, so it is generating much debate, due to the risks of contamination in surface waters and subterranean environment, caused by the high amount of water used, the additives used, the return fluid, by altering the physical environment, and the difficulty of monitoring these processes. In this project identifies the environmental and health risks associated with unconventional gas extraction. The work is mainly based on experiences that occurred in countries where fracking has become a common practice. This is for establish the necessary basis for estimating the vulnerability of aquifers from contamination induced by hydraulic fracturing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Los precios de compra de gas natural en el mercado mayorista español son los más altos de toda Europa. Este escenario provoca que haya que buscar alternativas para minimizar los costes de aprovisionamiento para una comercializadora de gas. En este proyecto se analizan distintas oportunidades de compra de gas en los mercados europeos y su importación al sistema gasista español para el suministro final a clientes, con el fin de optimizar los costes del gas natural para una comercializadora. En la búsqueda de nuevas oportunidades se incluye también un análisis del impacto económico en el mercado, de la producción de “shale gas” en España a medio - largo plazo. ABSTRACT The gas prices in the Spanish gas market are the highest in Europe. This scenario leads the Spanish gas trading companies to look for alternatives to minimize gas supply costs. In this project it is analyzed different opportunities of gas supply in the European markets and the gas import to the Spanish gas system, in order to optimize the costs of the natural gas for a gas trading company. Along with this, it is also studied, the economic impact of the “shale gas” production in Spain in a medium - long term on the Spanish gas market

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The addition of hydrogen to natural gas could be a short-term alternative to today’s fossil fuels, as greenhouse gas emissions may be reduced. The aim of this study is to evaluate the emissions and performance of a spark ignition engine fuelled by pure natural gas, pure hydrogen, and different blends of hydrogen and natural gas (HCNG). Increasing the hydrogen fraction leads to variations in cylinder pressure and CO2 emissions. In this study, a combustion model based on thermodynamic equations is used, considering separate zones for burned and unburned gases. The results show that the maximum cylinder pressure rises as the fraction of hydrogen in the blend increases. The presence of hydrogen in the blend leads to a decrease in CO2 emissions. Due to the properties of hydrogen, leaner fuel–air mixtures can be used along with the appropriate spark timing, leading to an improvement in engine emissions with no loss of performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We can say without hesitation that in energy markets a throughout data analysis is crucial when designing sophisticated models that are able to capture most of the critical market drivers. In this study we will attempt to investigate into Spanish natural gas prices structure to improve understanding of the role they play in the determination of electricity prices and decide in the future about price modelling aspects. To further understand the potential for modelling, this study will focus on the nature and characteristics of the different gas price data available. The fact that the existing gas market in Spain does not incorporate enough liquidity of trade makes it even more critical to analyze in detail available gas price data information that in the end will provide relevant information to understand how electricity prices are affected by natural gas markets. In this sense representative Spanish gas prices are typically difficult to explore given the fact that there is not a transparent gas market yet and all the gas imported in the country is negotiated and purchased by private companies at confidential terms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For almost 30 years. serious interest has been directed toward natural gas hydrate, a crystalline solid composed of water and methane, as a potential (i) energy resource, (ii) factor in global climate change, and (iii) submarine geohazard. Although each of these issues can affect human welfare, only (iii) is considered to be of immediate importance. Assessments of gas hydrate as an energy resource have often been overly optimistic, based in part on its very high methane content and on its worldwide occurrence in continental margins. Although these attributes are attractive, geologic settings, reservoir properties, and phase-equilibria considerations diminish the energy resource potential of natural gas hydrate. The possible role of gas hydrate in global climate change has been often overstated. Although methane is a “greenhouse” gas in the atmosphere, much methane from dissociated gas hydrate may never reach the atmosphere, but rather may be converted to carbon dioxide and sequestered by the hydrosphere/biosphere before reaching the atmosphere. Thus, methane from gas hydrate may have little opportunity to affect global climate change. However, submarine geohazards (such as sediment instabilities and slope failures on local and regional scales, leading to debris flows, slumps, slides, and possible tsunamis) caused by gas-hydrate dissociation are of immediate and increasing importance as humankind moves to exploit seabed resources in ever-deepening waters of coastal oceans. The vulnerability of gas hydrate to temperature and sea level changes enhances the instability of deep-water oceanic sediments, and thus human activities and installations in this setting can be affected.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O Gás Natural Liquefeito (GNL) tem, aos poucos, se tornado uma importante opção para a diversificação da matriz energética brasileira. Os navios metaneiros são os responsáveis pelo transporte do GNL desde as plantas de liquefação até as de regaseificação. Dada a importância, bem como a periculosidade, das operações de transporte e de carga e descarga de navios metaneiros, torna-se necessário não só um bom plano de manutenção como também um sistema de detecção de falhas que podem ocorrer durante estes processos. Este trabalho apresenta um método de diagnose de falhas para a operação de carga e descarga de navios transportadores de GNL através da utilização de Redes Bayesianas em conjunto com técnicas de análise de confiabilidade, como a Análise de Modos e Efeitos de Falhas (FMEA) e a Análise de Árvores de Falhas (FTA). O método proposto indica, através da leitura de sensores presentes no sistema de carga e descarga, quais os componentes que mais provavelmente estão em falha. O método fornece uma abordagem bem estruturada para a construção das Redes Bayesianas utilizadas na diagnose de falhas do sistema.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The EU relies to a considerable degree on imports to meet its demand for natural gas. Whereas Norwegian export pipelines are directly connected to the EU gas system, a major share of Russian gas flows through the Ukrainian territory before reaching consumers located other consumers located down in the supply chain (e.g. Slovakia, Hungary or Italy). But is the Ukrainian gas transit route still a risk? Will the construction of the South Stream pipeline further reduce the importance of Ukraine as a transit country? Or is there more at stake here than meets the eye?

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The EU relies heavily on imports to meet its demand for natural gas. Nearly 23% of the gas burned by the EU member states is produced in Russian gas fields. Ukraine remains one of the main supply routes for Russian gas flowing into Europe. Consequently, mounting tensions between Russia and Ukraine concerning the Crimean Peninsula brought back memories of past gas supply disruptions, most notably of 2009. The question today is whether the EU in 2014 is equally vulnerable to potential (forced or voluntary) cuts in Russian gas supplies as it was five years ago. In this commentary, Arno Behrens and Julian Wieczorkiewicz look into two different scenarios. First, could Europe sustain longer cuts in gas supplies from Russia? And second, what impact would disruptions of Russian gas deliveries to Ukraine have on the EU? Essentially the authors argue that Russia is highly dependent on gas exports to Europe, while Europe could resort to alternatives to Russian gas. In addition, Europe is much better prepared for potential short-term supply disruptions than it was five years ago.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For many years, when natural gas was mentioned in conjunction with Ukraine, it meant nothing but trouble. But at the very moment when Ukraine's territorial integrity is at stake, natural gas could become part of the solution. Due to its massive storage potential, namely one-third that of the EU (or seven-times that of the UK), Ukraine is a natural candidate for an eastern European gas hub. Becoming an integrated part of the European gas market has economic and political merits – both for Ukraine and the EU.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The energy security of countries importing energy resources depends largely on the shape and quality of operational transport connections. This is particularly important in the case of natural gas supplies. Natural gas is transported mostly by gas pipelines which permanently connect gas producers and consumers. Thus Europe as a consumer is "tied" to certain gas suppliers for anywhere between a dozen and several tens of years. As their own resources are becoming depleted, the EU Member States get increasingly dependent on import of natural gas. The present paper discusses the existing and projected gas transport routes from Russia to the EU. The first part deals with the importance of gas exports to the economy of the Russian Federation, and the second delves into the EU Member States' dependence on gas imports. Then this paper examines the differences in perceiving the energy security issue between the old and the new Member States, those differences stemming from the different degrees of their dependence on Russian supplies. In the third part, two new transport route projects for Russian gas supplies to the EU are compared and it is argued that from the point of view of the Community's interests, the Yamal gas pipeline is a better solution than the North European (Trans-Baltic) gas pipeline.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The similarity of issues and geographical proximity have led the Visegrad 4 countries (V4) to undertake closer collaboration in natural gas policy, notably by agreeing on a common security of supply strategy, including regional emergency planning, and a common implementation of the Gas Target Model (GTM) that European regulators have proposed for the medium-long term design of the EU gas market, and which has been endorsed by the Madrid Regulatory Forum. As a contribution to this collaboration, the present paper will analyse how the GTM may be implemented in the V4 region, with a view to maximize the benefits that arise from joint implementation. A most relevant conclusion of the GTM is that markets should be large enough to attract market players and investments, so that sufficient diversity of sources may be reached and market power indicators are kept below dangerous levels. In most cases, this requires physical and/or virtual interconnection of present markets, which is also useful to achieve the required security of supply standards, as envisaged in the Regulation 994/2010/EC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The former USSR area plays a great role in the international oil and gas market. Russia is a real gas giant, with the richest deposits of this material in the world. Russia is also the main exporter of natural gas to many European countries. Keeping a strong position in this market remains a priority for the Russian Federation's economic policy. Europe is a very attractive region because its demand for gas is expected to grow steadily, while its own gas production keeps decreasing. In the long term, the Far East will be an important market for Russian exports, too. According to estimates, demand there will grow even faster than in Europe. Caspian gas producers, for the time being, can not really compete with Russia in this field, and this status quo will most probably be preserved in the nearest future.