921 resultados para Nanostructured gold surface


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Nanomedicine has the potential to revolutionize medicine and help clinicians to treat cardiovascular disease through the improvement of stents. Advanced nanomaterials and tools for monitoring cell-material interactions will aid in inhibiting stent thrombosis. Although titanium boron nitride (TiBN), titanium diboride, and carbon nanotube (CNT) thin films are emerging materials in the biomaterial field, the effect of their surface properties on platelet adhesion is relatively unexplored. OBJECTIVE AND METHODS: In this study, novel nanomaterials made of amorphous carbon, CNTs, titanium diboride, and TiBN were grown by vacuum deposition techniques to assess their role as potential stent coatings. Platelet response towards the nanostructured surfaces of the samples was analyzed in line with their physicochemical properties. As the stent skeleton is formed mainly of stainless steel, this material was used as reference material. Platelet adhesion studies were carried out by atomic force microscopy and scanning electron microscopy observations. A cell viability study was performed to assess the cytocompatibility of all thin film groups for 24 hours with a standard immortalized cell line. RESULTS: The nanotopographic features of material surface, stoichiometry, and wetting properties were found to be significant factors in dictating platelet behavior and cell viability. The TiBN films with higher nitrogen contents were less thrombogenic compared with the biased carbon films and control. The carbon hybridization in carbon films and hydrophilicity, which were strongly dependent on the deposition process and its parameters, affected the thrombogenicity potential. The hydrophobic CNT materials with high nanoroughness exhibited less hemocompatibility in comparison with the other classes of materials. All the thin film groups exhibited good cytocompatibility, with the surface roughness and surface free energy influencing the viability of cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A pure surface plasmon polariton (SPP) model predicted that the SPP excitation in a slit-groove structure at metallodielectric interfaces exhibits an intricate dependence on the groove width P. Lalanne et al. [Phys. Rev. Lett. 95, 263902 (2005); Nat. Phys. 2, 551 (2006)]. In this paper, we present a simple far-field experiment to test and validate this interesting theoretical prediction. The measurement results clearly demonstrate the predicted functional dependence of the SPP coupling efficiency on groove width, in good agreement with the SPP picture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal tuning of the localized surface plasmon resonance (LSPR) of Ag nanoparticles on a thermochromic thin film of VO2 was studied experimentally. The tuning is strongly temperature dependent and thermally reversible. The LSPR wavelength lambda(SPR) shifts to the blue with increasing temperature from 30 to 80 degrees C, and shifts back to the red as temperature decreases. A smart tuning is achievable on condition that the temperature is controlled in a stepwise manner. The tunable wavelength range depends on the particle size or the mass thickness of the metal nanoparticle film. Further, the tunability was found to be enhanced significantly when a layer of TiO2 was introduced to overcoat the Ag nanoparticles, yielding a marked sensitivity factor Delta lambda(SPR)/Delta n, of as large as 480 nm per refractive index unit (n) at the semiconductor phase of VO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A superhydrophobic surface has many advantages in micro/nanomechanical applications, such as low adhesion, low friction and high restitution coefficient, etc. In this paper, we introduce a novel and simple route to fabricate superhydrophobic surfaces using ZnO nanocrystals. First, tetrapod-like ZnO nanocrystals were prepared via a one-step, direct chemical vapor deposition (CVD) approach. The nanostructured ZnO material was characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD) and the surface functionalized by aminopropyltriethoxysilane (APS) was found to be hydrophobic. Then the superhydrophobic surface was constructed by depositing uniformly ZnO hydrophobic nanoparticles (HNPs) on the Poly(dimethylsiloxane) (PDMS) film substrate. Water wettability study revealed a contact angle of 155.4 +/- 2 degrees for the superhydrophobic surface while about 110 degrees for pure smooth PDMS films. The hysteresis was quite low, only 3.1 +/- 0.3 degrees. Microscopic observations showed that the surface was covered by micro- and nano-scale ZnO particles. Compared to other approaches, this method is rather convenient and can be used to obtain a large area superhydrophobic surface. The high contact angle and low hysteresis could be attributed to the micro/nano structures of ZnO material; besides, the superhydrophobic property of the as-constructed ZnO-PDMS surface could be maintained for at least 6 months. (C) Koninklijke Brill NV, Leiden, 2010

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface initiated polymerization (SIP) has become an attractive method for tailoring physical and chemical properties of surfaces for a broad range of applications. Most of those application relied on the merit of a high density coating. In this study we explored a long overlooked field of SIP. SIP from substrates of low initiator density. We combined ellipsometry with AFM to investigate the effect of initiatior density and polymerization time on the morphology of polymer coatings. In addition, we carefully adjusted the nanoscale separation of polymer chains to achieve a balance between nonfouling and immobilization capacities. We further tested the performance of those coating on various biosensors, such as quartz crystal microbalance, surface plasmon resonance, and protein microarrays. The optimized matrices enhanced the performance of those biosensors. This report shall encourage researches to explore new frontiers in SIP that go beyond polymer brushes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gold nanowires with diameters (d) between,15 run and 200 urn and with length/diameter ratio of 700 were prepared in ion-track templates with electrode position method. The morphology and crystal structure of the gold nanowires were Studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The 200 nm (d) gold nanowires preferred orientation along the [100] direction were formed at the deposition voltage of 1.5 V (Without reference electrode). The optical properties of gold nanowire arrays embedded in ion-track templates were studied by UV-Vis spectrophotometer. There was a strong absorption peak at 539 nm for 45 nm (d) gold nanowire arrays. With the diameter of gold nanowires increasing, the absorption peak shifted to the longer wavelength. At last, the result was discussed combined with surface plasmon resonance of gold nanoparticles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the study, a novel microemulsion system, consisting of water, iso-propanol and n-butanol, was developed to synthesize the nanostructured La0.95Ba0.05MnAl11O19 catalyst with high surface area and catalytic activity for methane combustion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid materials of polyacrylamide networks and gold nanoparticles were prepared by directly heating an aqueous solution containing HAuCl4, acrylamide, N,N'-methylenebisacrylamide, and sodium sulfite (Na2SO3). Acrylamide, N,N'-methylenebisacrylamide, and Na2SO3 were used as monomers, crosslinking agent, and initiator, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biocatalytic growth of gold nanoparticles (Au-NPs) has been employed in the design of new optical biosensors based on the enhanced resonance light scattering (RLS) signals. Both absorption spectroscopy and transmission electron microscopy (TEM) analysis revealed Au-NP seeds could be effectively enlarged upon the reaction with H2O2, an important metabolite that could be generated by many biocatalytic reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A NADH and glucose biosensor based on thionine cross-linked multiwalled carbon nanotubes (MWNTs) and Au nanoparticles (Au NPs) multilayer functionalized indium-doped tin oxide (ITO) electrode were presented in this paper. The effect of light irradiation on the enhancement of bioelectrocatalytic processes of the biocatalytic systems by the photovoltaic effect was investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A templateless, surfactantless, electrochemical route is proposed to directly fabricate hierarchical spherical cupreous microstructures (HSCMs) on an indium tin oxide (ITO) substrate. The as-prepared HSCMs have been characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports the study of protein conformational change by Au nanoparticles (AUNPs)-amplified surface plasmon resonance (SPR) spectroscopy. Taking cytochrome c (Cyt c) as an example, this paper gives a detailed description of the construction of metal-protein-metal sandwich nanostructure consisting of an Au film underlayer, a cytochrome c intermediate layer and an AuNPs upper layer. The incorporation of AuNPs into SPR biosensing results in increased SPR sensitivity to protein conformational change as demonstrated by acid denaturation of Cyt c. It suggests the conformational change of surface-confined Cyt c leads to the distance and electromagnetic coupling variations of Au film-AuNPs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple light scattering detection method for neurotransmitters has been developed, based on the growth of gold nanoparticles. Neurotransmitters (dopamine, L-dopa, noradrenaline and adrenaline) can effectively function as active reducing agents for generating gold nanoparticles, which result in enhanced light scattering signals. The strong light scattering of gold nanoparticles then allows the quantitative detection of the neurotransmitters simply by using a common spectrofluorometer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deliberate tailoring of hierarchical flowerlike gold microstructure (HFGMs) at the ultrathin level is an ongoing challenge and could introduce opportunities for new fabrication and application in many fields. In this paper. a templateless, surfactantless, electrochemical strategy for fabrication of ultrathin platinum-group metal coated HFGMs is proposed. HFGMs were prepared by simple electrodeposition on an indium tin oxide (ITO) substrate.