898 resultados para NONLINEAR-ANALYSIS
Resumo:
The Airy stress function, although frequently employed in classical linear elasticity, does not receive similar usage for granular media problems. For plane strain quasi-static deformations of a cohesionless Coulomb–Mohr granular solid, a single nonlinear partial differential equation is formulated for the Airy stress function by combining the equilibrium equations with the yield condition. This has certain advantages from the usual approach, in which two stress invariants and a stress angle are introduced, and a system of two partial differential equations is needed to describe the flow. In the present study, the symmetry analysis of differential equations is utilised for our single partial differential equation, and by computing an optimal system of one-dimensional Lie algebras, a complete set of group-invariant solutions is derived. By this it is meant that any group-invariant solution of the governing partial differential equation (provided it can be derived via the classical symmetries method) may be obtained as a member of this set by a suitable group transformation. For general values of the parameters (angle of internal friction and gravity g) it is found there are three distinct classes of solutions which correspond to granular flows considered previously in the literature. For the two limiting cases of high angle of internal friction and zero gravity, the governing partial differential equation admit larger families of Lie point symmetries, and from these symmetries, further solutions are derived, many of which are new. Furthermore, the majority of these solutions are exact, which is rare for granular flow, especially in the case of gravity driven flows.
Resumo:
In this paper we analyze the equations of motion of a submerged rigid body. Our motivation is based on recent developments done in trajectory design for this problem. Our goal is to relate some properties of singular extremals to the existence of decoupling vector fields. The ideas displayed in this paper can be viewed as a starting point to a geometric formulation of the trajectory design problem for mechanical systems with potential and external forces.
Resumo:
The computation of compact and meaningful representations of high dimensional sensor data has recently been addressed through the development of Nonlinear Dimensional Reduction (NLDR) algorithms. The numerical implementation of spectral NLDR techniques typically leads to a symmetric eigenvalue problem that is solved by traditional batch eigensolution algorithms. The application of such algorithms in real-time systems necessitates the development of sequential algorithms that perform feature extraction online. This paper presents an efficient online NLDR scheme, Sequential-Isomap, based on incremental singular value decomposition (SVD) and the Isomap method. Example simulations demonstrate the validity and significant potential of this technique in real-time applications such as autonomous systems.
Resumo:
Three recent papers published in Chemical Engineering Journal studied the solution of a model of diffusion and nonlinear reaction using three different methods. Two of these studies obtained series solutions using specialized mathematical methods, known as the Adomian decomposition method and the homotopy analysis method. Subsequently it was shown that the solution of the same particular model could be written in terms of a transcendental function called Gauss’ hypergeometric function. These three previous approaches focused on one particular reactive transport model. This particular model ignored advective transport and considered one specific reaction term only. Here we generalize these previous approaches and develop an exact analytical solution for a general class of steady state reactive transport models that incorporate (i) combined advective and diffusive transport, and (ii) any sufficiently differentiable reaction term R(C). The new solution is a convergent Maclaurin series. The Maclaurin series solution can be derived without any specialized mathematical methods nor does it necessarily involve the computation of any transcendental function. Applying the Maclaurin series solution to certain case studies shows that the previously published solutions are particular cases of the more general solution outlined here. We also demonstrate the accuracy of the Maclaurin series solution by comparing with numerical solutions for particular cases.
Resumo:
The electron collection efficiency in dye-sensitized solar cells (DSCs) is usually related to the electron diffusion length, L = (Dτ)1/2, where D is the diffusion coefficient of mobile electrons and τ is their lifetime, which is determined by electron transfer to the redox electrolyte. Analysis of incident photon-to-current efficiency (IPCE) spectra for front and rear illumination consistently gives smaller values of L than those derived from small amplitude methods. We show that the IPCE analysis is incorrect if recombination is not first-order in free electron concentration, and we demonstrate that the intensity dependence of the apparent L derived by first-order analysis of IPCE measurements and the voltage dependence of L derived from perturbation experiments can be fitted using the same reaction order, γ ≈ 0.8. The new analysis presented in this letter resolves the controversy over why L values derived from small amplitude methods are larger than those obtained from IPCE data.
Resumo:
In this contribution, a stability analysis for a dynamic voltage restorer (DVR) connected to a weak ac system containing a dynamic load is presented using continuation techniques and bifurcation theory. The system dynamics are explored through the continuation of periodic solutions of the associated dynamic equations. The switching process in the DVR converter is taken into account to trace the stability regions through a suitable mathematical representation of the DVR converter. The stability regions in the Thevenin equivalent plane are computed. In addition, the stability regions in the control gains space, as well as the contour lines for different Floquet multipliers, are computed. Besides, the DVR converter model employed in this contribution avoids the necessity of developing very complicated iterative map approaches as in the conventional bifurcation analysis of converters. The continuation method and the DVR model can take into account dynamics and nonlinear loads and any network topology since the analysis is carried out directly from the state space equations. The bifurcation approach is shown to be both computationally efficient and robust, since it eliminates the need for numerically critical and long-lasting transient simulations.
Resumo:
Spatially offset Raman spectroscopy (SORS) is a powerful new technique for the non-invasive detection and identification of concealed substances and drugs. Here, we demonstrate the SORS technique in several scenarios that are relevant to customs screening, postal screening, drug detection and forensics applications. The examples include analysis of a multi-layered postal package to identify a concealed substance; identification of an antibiotic capsule inside its plastic blister pack; analysis of an envelope containing a powder; and identification of a drug dissolved in a clear solvent, contained in a non-transparent plastic bottle. As well as providing practical examples of SORS, the results highlight several considerations regarding the use of SORS in the field, including the advantages of different analysis geometries and the ability to tailor instrument parameters and optics to suit different types of packages and samples. We also discuss the features and benefits of SORS in relation to existing Raman techniques, including confocal microscopy, wide area illumination and the conventional backscattered Raman spectroscopy. The results will contribute to the recognition of SORS as a promising method for the rapid, chemically-specific analysis and detection of drugs and pharmaceuticals.
Resumo:
In this paper, we consider the variable-order Galilei advection diffusion equation with a nonlinear source term. A numerical scheme with first order temporal accuracy and second order spatial accuracy is developed to simulate the equation. The stability and convergence of the numerical scheme are analyzed. Besides, another numerical scheme for improving temporal accuracy is also developed. Finally, some numerical examples are given and the results demonstrate the effectiveness of theoretical analysis. Keywords: The variable-order Galilei invariant advection diffusion equation with a nonlinear source term; The variable-order Riemann–Liouville fractional partial derivative; Stability; Convergence; Numerical scheme improving temporal accuracy
Resumo:
Strengthening of steel structures using externally-bonded carbon fibre reinforced polymers ‘CFRP’ is a rapidly developing technique. This paper describes the behaviour of axially loaded flat steel plates strengthened using carbon fibre reinforced polymer sheets. Two steel plates were joined together with adhesive and followed by the application of carbon fibre sheet double strap joint with different bond lengths. The behaviour of the specimens was further investigated by using nonlinear finite element analysis to predict the failure modes and load capacity. In this study, bond failure is the dominant failure mode for normal modulus (240 GPa) CFRP bonding which closely matched the results of finite elements. The predicted ultimate loads from the FE analysis are found to be in good agreement with experimental values.
Resumo:
Higher order spectral analysis is used to investigate nonlinearities in time series of voltages measured from a realization of Chua's circuit. For period-doubled limit cycles, quadratic and cubic nonlinear interactions result in phase coupling and energy exchange between increasing numbers of triads and quartets of Fourier components as the nonlinearity of the system is increased. For circuit parameters that result in a chaotic Rossler-type attractor, bicoherence and tricoherence spectra indicate that both quadratic and cubic nonlinear interactions are important to the dynamics. When the circuit exhibits a double-scroll chaotic attractor the bispectrum is zero, but the tricoherences are high, consistent with the importance of higher-than-second order nonlinear interactions during chaos associated with the double scroll.
Resumo:
We develop a new analytical solution for a reactive transport model that describes the steady-state distribution of oxygen subject to diffusive transport and nonlinear uptake in a sphere. This model was originally reported by Lin (Journal of Theoretical Biology, 1976 v60, pp449–457) to represent the distribution of oxygen inside a cell and has since been studied extensively by both the numerical analysis and formal analysis communities. Here we extend these previous studies by deriving an analytical solution to a generalized reaction-diffusion equation that encompasses Lin’s model as a particular case. We evaluate the solution for the parameter combinations presented by Lin and show that the new solutions are identical to a grid-independent numerical approximation.
Resumo:
Autonomous guidance of agricultural vehiclesis vital as mechanized farming production becomes more prevalent. It is crucial that tractor-trailers are guided with accuracy in both lateral and longitudinal directions, whilst being affected by large disturbance forces, or slips, owing to uncertain and undulating terrain. Successful research has been concentrated on trajectory control which can provide longitudinal and lateral accuracy if the vehicle moves without sliding, and the trailer is passive. In this paper, the problem of robust trajectory tracking along straight and circular paths of a tractor-steerable trailer is addressed. By utilizing a robust combination of backstepping and nonlinear PI control, a robust, nonlinear controller is proposed. For vehicles subjected to sliding, the proposed controller makes the lateral deviations and the orientation errors of the tractor and trailer converge to a neighborhood near the origin. Simulation results are presented to illustrate that the suggested controller ensures precise trajectory tracking in the presence of slip.
Resumo:
Existing algebraic analyses of the ZUC cipher indicate that the cipher should be secure against algebraic attacks. In this paper, we present an alternative algebraic analysis method for the ZUC stream cipher, where a combiner is used to represent the nonlinear function and to derive equations representing the cipher. Using this approach, the initial states of ZUC can be recovered from 2^97 observed words of keystream, with a complexity of 2^282 operations. This method is more successful when applied to a modified version of ZUC, where the number of output words per clock is increased. If the cipher outputs 120 bits of keystream per clock, the attack can succeed with 219 observed keystream bits and 2^47 operations. Therefore, the security of ZUC against algebraic attack could be significantly reduced if its throughput was to be increased for efficiency.
Resumo:
Both the SSS and SOBER-t32 stream cipher designs use a single word-based shift register and a nonlinear filter function to produce keystream. In this paper we show that the algebraic attack method previously applied to SOBER-t32 is prevented from succeeding on SSS by the use of the key dependent substitution box (SBox) in the nonlinear filter of SSS. Additional assumptions and modifications to the SSS cipher in an attempt to enable algebraic analysis result in other difficulties that also render the algebraic attack infeasible. Based on these results, we conclude that a well chosen key-dependent substitution box used in the nonlinear filter of the stream cipher provides resistance against such algebraic attacks.
Resumo:
In this paper, a three-dimensional nonlinear rigid body model has been developed for the investigation of the crashworthiness of a passenger train using the multibody dynamics approach. This model refers to a typical design of passenger cars and train constructs commonly used in Australia. The high-energy and low-energy crush zones of the cars and the train constructs are assumed and the data are explicitly provided in the paper. The crash scenario is limited to the train colliding on to a fixed barrier symmetrically. The simulations of a single car show that this initial design is only applicable for the crash speed of 35 km/h or lower. For higher speeds (e.g. 140 km/h), the crush lengths or crush forces or both the crush zone elements will have to be enlarged. It is generally better to increase the crush length than the crush force in order to retain the low levels of the longitudinal deceleration of the passenger cars.