902 resultados para Multivariate measurement model
Resumo:
Measuring school efficiency is a challenging task. First, a performance measurement technique has to be selected. Within Data Envelopment Analysis (DEA), one such technique, alternative models have been developed in order to deal with environmental variables. The majority of these models lead to diverging results. Second, the choice of input and output variables to be included in the efficiency analysis is often dictated by data availability. The choice of the variables remains an issue even when data is available. As a result, the choice of technique, model and variables is probably, and ultimately, a political judgement. Multi-criteria decision analysis methods can help the decision makers to select the most suitable model. The number of selection criteria should remain parsimonious and not be oriented towards the results of the models in order to avoid opportunistic behaviour. The selection criteria should also be backed by the literature or by an expert group. Once the most suitable model is identified, the principle of permanence of methods should be applied in order to avoid a change of practices over time. Within DEA, the two-stage model developed by Ray (1991) is the most convincing model which allows for an environmental adjustment. In this model, an efficiency analysis is conducted with DEA followed by an econometric analysis to explain the efficiency scores. An environmental variable of particular interest, tested in this thesis, consists of the fact that operations are held, for certain schools, on multiple sites. Results show that the fact of being located on more than one site has a negative influence on efficiency. A likely way to solve this negative influence would consist of improving the use of ICT in school management and teaching. Planning new schools should also consider the advantages of being located on a unique site, which allows reaching a critical size in terms of pupils and teachers. The fact that underprivileged pupils perform worse than privileged pupils has been public knowledge since Coleman et al. (1966). As a result, underprivileged pupils have a negative influence on school efficiency. This is confirmed by this thesis for the first time in Switzerland. Several countries have developed priority education policies in order to compensate for the negative impact of disadvantaged socioeconomic status on school performance. These policies have failed. As a result, other actions need to be taken. In order to define these actions, one has to identify the social-class differences which explain why disadvantaged children underperform. Childrearing and literary practices, health characteristics, housing stability and economic security influence pupil achievement. Rather than allocating more resources to schools, policymakers should therefore focus on related social policies. For instance, they could define pre-school, family, health, housing and benefits policies in order to improve the conditions for disadvantaged children.
Resumo:
The evolution of continuous traits is the central component of comparative analyses in phylogenetics, and the comparison of alternative models of trait evolution has greatly improved our understanding of the mechanisms driving phenotypic differentiation. Several factors influence the comparison of models, and we explore the effects of random errors in trait measurement on the accuracy of model selection. We simulate trait data under a Brownian motion model (BM) and introduce different magnitudes of random measurement error. We then evaluate the resulting statistical support for this model against two alternative models: Ornstein-Uhlenbeck (OU) and accelerating/decelerating rates (ACDC). Our analyses show that even small measurement errors (10%) consistently bias model selection towards erroneous rejection of BM in favour of more parameter-rich models (most frequently the OU model). Fortunately, methods that explicitly incorporate measurement errors in phylogenetic analyses considerably improve the accuracy of model selection. Our results call for caution in interpreting the results of model selection in comparative analyses, especially when complex models garner only modest additional support. Importantly, as measurement errors occur in most trait data sets, we suggest that estimation of measurement errors should always be performed during comparative analysis to reduce chances of misidentification of evolutionary processes.
Resumo:
Current measures of ability emotional intelligence (EI)--including the well-known Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT)--suffer from several limitations, including low discriminant validity and questionable construct and incremental validity. We show that the MSCEIT is largely predicted by personality dimensions, general intelligence, and demographics having multiple R's with the MSCEIT branches up to .66; for the general EI factor this relation was even stronger (Multiple R = .76). As concerns the factor structure of the MSCEIT, we found support for four first-order factors, which had differential relations with personality, but no support for a higher-order global EI factor. We discuss implications for employing the MSCEIT, including (a) using the single branches scores rather than the total score, (b) always controlling for personality and general intelligence to ensure unbiased parameter estimates in the EI factors, and (c) correcting for measurement error. Failure to account for these methodological aspects may severely compromise predictive validity testing. We also discuss avenues for the improvement of ability-based tests.
Resumo:
We present MBIS (Multivariate Bayesian Image Segmentation tool), a clustering tool based on the mixture of multivariate normal distributions model. MBIS supports multichannel bias field correction based on a B-spline model. A second methodological novelty is the inclusion of graph-cuts optimization for the stationary anisotropic hidden Markov random field model. Along with MBIS, we release an evaluation framework that contains three different experiments on multi-site data. We first validate the accuracy of segmentation and the estimated bias field for each channel. MBIS outperforms a widely used segmentation tool in a cross-comparison evaluation. The second experiment demonstrates the robustness of results on atlas-free segmentation of two image sets from scan-rescan protocols on 21 healthy subjects. Multivariate segmentation is more replicable than the monospectral counterpart on T1-weighted images. Finally, we provide a third experiment to illustrate how MBIS can be used in a large-scale study of tissue volume change with increasing age in 584 healthy subjects. This last result is meaningful as multivariate segmentation performs robustly without the need for prior knowledge.
Resumo:
Winter weather in Iowa is often unpredictable and can have an adverse impact on traffic flow. The Iowa Department of Transportation (Iowa DOT) attempts to lessen the impact of winter weather events on traffic speeds with various proactive maintenance operations. In order to assess the performance of these maintenance operations, it would be beneficial to develop a model for expected speed reduction based on weather variables and normal maintenance schedules. Such a model would allow the Iowa DOT to identify situations in which speed reductions were much greater than or less than would be expected for a given set of storm conditions, and make modifications to improve efficiency and effectiveness. The objective of this work was to predict speed changes relative to baseline speed under normal conditions, based on nominal maintenance schedules and winter weather covariates (snow type, temperature, and wind speed), as measured by roadside weather stations. This allows for an assessment of the impact of winter weather covariates on traffic speed changes, and estimation of the effect of regular maintenance passes. The researchers chose events from Adair County, Iowa and fit a linear model incorporating the covariates mentioned previously. A Bayesian analysis was conducted to estimate the values of the parameters of this model. Specifically, the analysis produces a distribution for the parameter value that represents the impact of maintenance on traffic speeds. The effect of maintenance is not a constant, but rather a value that the researchers have some uncertainty about and this distribution represents what they know about the effects of maintenance. Similarly, examinations of the distributions for the effects of winter weather covariates are possible. Plots of observed and expected traffic speed changes allow a visual assessment of the model fit. Future work involves expanding this model to incorporate many events at multiple locations. This would allow for assessment of the impact of winter weather maintenance across various situations, and eventually identify locations and times in which maintenance could be improved.
Resumo:
In the previous study, moisture loss indices were developed based on the field measurements from one CIR-foam and one CIR-emulsion construction sites. To calibrate these moisture loss indices, additional CIR construction sites were monitored using embedded moisture and temperature sensors. In addition, to determine the optimum timing of an HMA overlay on the CIR layer, the potential of using the stiffness of CIR layer measured by geo-gauge instead of the moisture measurement by a nuclear gauge was explored. Based on the monitoring the moisture and stiffness from seven CIR project sites, the following conclusions are derived: 1. In some cases, the in-situ stiffness remained constant and, in other cases, despite some rainfalls, stiffness of the CIR layers steadily increased during the curing time. 2. The stiffness measured by geo-gauge was affected by a significant amount of rainfall. 3. The moisture indices developed for CIR sites can be used for predicting moisture level in a typical CIR project. The initial moisture content and temperature were the most significant factors in predicting the future moisture content in the CIR layer. 4. The stiffness of a CIR layer is an extremely useful tool for contractors to use for timing their HMA overlay. To determine the optimal timing of an HMA overlay, it is recommended that the moisture loss index should be used in conjunction with the stiffness of the CIR layer.
Resumo:
The objectives of this work were to evaluate the genotype x environment (GxE) interaction for popcorn and to compare two multivariate analyses methods. Nine popcorn cultivars were sown on four dates one month apart during each of the agricultural years 1998/1999 and 1999/2000. The experiments were carried out using randomized block designs, with four replicates. The cv. Zélia contributed the least to the GxE interaction. The cv. Viçosa performed similarly to cv. Rosa-claro. Optimization of GxE was obtained for cv. CMS 42 for a favorable mega-environment, and for cv. CMS 43 for an unfavorable environment. Multivariate analysis supported the results from the method of Eberhart & Russell. The graphic analysis of the Additive Main effects and Multiplicative Interaction (AMMI) model was simple, allowing conclusions to be made about stability, genotypic performance, genetic divergence between cultivars, and the environments that optimize cultivar performance. The graphic analysis of the Genotype main effects and Genotype x Environment interaction (GGE) method added to AMMI information on environmental stratification, defining mega-environments and the cultivars that optimized performance in those mega-environments. Both methods are adequate to explain the genotype x environment interactions.
Resumo:
Determination of brain glucose transport kinetics in vivo at steady-state typically does not allow distinguishing apparent maximum transport rate (T(max)) from cerebral consumption rate. Using a four-state conformational model of glucose transport, we show that simultaneous dynamic measurement of brain and plasma glucose concentrations provide enough information for independent and reliable determination of the two rates. In addition, although dynamic glucose homeostasis can be described with a reversible Michaelis-Menten model, which is implicit to the large iso-inhibition constant (K(ii)) relative to physiological brain glucose content, we found that the apparent affinity constant (K(t)) was better determined with the four-state conformational model of glucose transport than with any of the other models tested. Furthermore, we confirmed the utility of the present method to determine glucose transport and consumption by analysing the modulation of both glucose transport and consumption by anaesthesia conditions that modify cerebral activity. In particular, deep thiopental anaesthesia caused a significant reduction of both T(max) and cerebral metabolic rate for glucose consumption. In conclusion, dynamic measurement of brain glucose in vivo in function of plasma glucose allows robust determination of both glucose uptake and consumption kinetics.
Resumo:
Abstract
Resumo:
Cancer pain significantly affects the quality of cancer patients, and current treatments for this pain are limited. C-Jun N-terminal kinase (JNK) has been implicated in tumor growth and neuropathic pain sensitization. We investigated the role of JNK in cancer pain and tumor growth in a skin cancer pain model. Injection of luciferase-transfected B16-Fluc melanoma cells into a hindpaw of mouse induced robust tumor growth, as indicated by increase in paw volume and fluorescence intensity. Pain hypersensitivity in this model developed rapidly (<5 days) and reached a peak in 2 weeks, and was characterized by mechanical allodynia and heat hyperalgesia. Tumor growth was associated with JNK activation in tumor mass, dorsal root ganglion (DRG), and spinal cord and a peripheral neuropathy, such as loss of nerve fibers in the hindpaw skin and induction of ATF-3 expression in DRG neurons. Repeated systemic injections of D-JNKI-1 (6 mg/kg, i.p.), a selective and cell-permeable peptide inhibitor of JNK, produced an accumulative inhibition of mechanical allodynia and heat hyperalgesia. A bolus spinal injection of D-JNKI-1 also inhibited mechanical allodynia. Further, JNK inhibition suppressed tumor growth in vivo and melanoma cell proliferation in vitro. In contrast, repeated injections of morphine (5 mg/kg), a commonly used analgesic for terminal cancer, produced analgesic tolerance after 1 day and did not inhibit tumor growth. Our data reveal a marked peripheral neuropathy in this skin cancer model and important roles of the JNK pathway in cancer pain development and tumor growth. JNK inhibitors such as D-JNKI-1 may be used to treat cancer pain.
Resumo:
Velocity-density tests conducted in the laboratory involved small 4-inch diameter by 4.58-inch-long compacted soil cylinders made up of 3 differing soil types and for varying degrees of density and moisture content, the latter being varied well beyond optimum moisture values. Seventeen specimens were tested, 9 with velocity determinations made along two elements of the cylinder, 180 degrees apart, and 8 along three elements, 120 degrees apart. Seismic energy was developed by blows of a small tack hammer on a 5/8-inch diameter steel ball placed at the center of the top of the cylinder, with the detector placed successively at four points spaced 1/2-inch apart on the side of the specimen involving wave travel paths varying from 3.36 inches to 4.66 inches in length. Time intervals were measured using a model 217 micro-seismic timer in both laboratory and field measurements. Forty blows of the hammer were required for each velocity determination, which amounted to 80 blows on 9 laboratory specimens and 120 blows on the remaining 8 cylinders. Thirty-five field tests were made over the three selected soil types, all fine-grained, using a 2-foot seismic line with hammer-impact points at 6-inch intervals. The small tack hammer and 5/8-inch steel ball was, again, used to develop seismic wave energy. Generally, the densities obtained from the velocity measurements were lower than those measured in the conventional field testing. Conclusions were reached that: (1) the method does not appear to be usable for measurement of density of essentially fine-grained soils when the moisture content greatly exceeds the optimum for compaction, and (2) due to a gradual reduction in velocity upon aging, apparently because of gradual absorption of pore water into the expandable interlayer region of the clay, the seismic test should be conducted immediately after soil compaction to obtain a meaningful velocity value.
Resumo:
Panel data can be arranged into a matrix in two ways, called 'long' and 'wide' formats (LFand WF). The two formats suggest two alternative model approaches for analyzing paneldata: (i) univariate regression with varying intercept; and (ii) multivariate regression withlatent variables (a particular case of structural equation model, SEM). The present papercompares the two approaches showing in which circumstances they yield equivalent?insome cases, even numerically equal?results. We show that the univariate approach givesresults equivalent to the multivariate approach when restrictions of time invariance (inthe paper, the TI assumption) are imposed on the parameters of the multivariate model.It is shown that the restrictions implicit in the univariate approach can be assessed bychi-square difference testing of two nested multivariate models. In addition, commontests encountered in the econometric analysis of panel data, such as the Hausman test, areshown to have an equivalent representation as chi-square difference tests. Commonalitiesand differences between the univariate and multivariate approaches are illustrated usingan empirical panel data set of firms' profitability as well as a simulated panel data.
Resumo:
This work is devoted to the problem of reconstructing the basis weight structure at paper web with black{box techniques. The data that is analyzed comes from a real paper machine and is collected by an o®-line scanner. The principal mathematical tool used in this work is Autoregressive Moving Average (ARMA) modelling. When coupled with the Discrete Fourier Transform (DFT), it gives a very flexible and interesting tool for analyzing properties of the paper web. Both ARMA and DFT are independently used to represent the given signal in a simplified version of our algorithm, but the final goal is to combine the two together. Ljung-Box Q-statistic lack-of-fit test combined with the Root Mean Squared Error coefficient gives a tool to separate significant signals from noise.
Resumo:
This study aimed to develop a hip screening tool that combines relevant clinical risk factors (CRFs) and quantitative ultrasound (QUS) at the heel to determine the 10-yr probability of hip fractures in elderly women. The EPISEM database, comprised of approximately 13,000 women 70 yr of age, was derived from two population-based white European cohorts in France and Switzerland. All women had baseline data on CRFs and a baseline measurement of the stiffness index (SI) derived from QUS at the heel. Women were followed prospectively to identify incident fractures. Multivariate analysis was performed to determine the CRFs that contributed significantly to hip fracture risk, and these were used to generate a CRF score. Gradients of risk (GR; RR/SD change) and areas under receiver operating characteristic curves (AUC) were calculated for the CRF score, SI, and a score combining both. The 10-yr probability of hip fracture was computed for the combined model. Three hundred seven hip fractures were observed over a mean follow-up of 3.2 yr. In addition to SI, significant CRFs for hip fracture were body mass index (BMI), history of fracture, an impaired chair test, history of a recent fall, current cigarette smoking, and diabetes mellitus. The average GR for hip fracture was 2.10 per SD with the combined SI + CRF score compared with a GR of 1.77 with SI alone and of 1.52 with the CRF score alone. Thus, the use of CRFs enhanced the predictive value of SI alone. For example, in a woman 80 yr of age, the presence of two to four CRFs increased the probability of hip fracture from 16.9% to 26.6% and from 52.6% to 70.5% for SI Z-scores of +2 and -3, respectively. The combined use of CRFs and QUS SI is a promising tool to assess hip fracture probability in elderly women, especially when access to DXA is limited.
Resumo:
Väitöstutkimuksessa on tarkasteltuinfrapunaspektroskopian ja monimuuttujaisten aineistonkäsittelymenetelmien soveltamista kiteytysprosessin monitoroinnissa ja kidemäisen tuotteen analysoinnissa. Parhaillaan kiteytysprosessitutkimuksessa maailmanlaajuisesti tutkitaan intensiivisesti erilaisten mittausmenetelmien soveltamista kiteytysprosessin ilmiöidenjatkuvaan mittaamiseen niin nestefaasista kuin syntyvistä kiteistäkin. Lisäksi tuotteen karakterisointi on välttämätöntä tuotteen laadun varmistamiseksi. Erityisesti lääkeaineiden valmistuksessa kiinnostusta tämäntyyppiseen tutkimukseen edistää Yhdysvaltain elintarvike- ja lääkeaineviraston (FDA) prosessianalyyttisiintekniikoihin (PAT) liittyvä ohjeistus, jossa määritellään laajasti vaatimukset lääkeaineiden valmistuksessa ja tuotteen karakterisoinnissa tarvittaville mittauksille turvallisten valmistusprosessien takaamiseksi. Jäähdytyskiteytyson erityisesti lääketeollisuudessa paljon käytetty erotusmenetelmä kiinteän raakatuotteen puhdistuksessa. Menetelmässä puhdistettava kiinteä raaka-aine liuotetaan sopivaan liuottimeen suhteellisen korkeassa lämpötilassa. Puhdistettavan aineen liukoisuus käytettävään liuottimeen laskee lämpötilan laskiessa, joten systeemiä jäähdytettäessä liuenneen aineen konsentraatio prosessissa ylittää liukoisuuskonsentraation. Tällaiseen ylikylläiseen systeemiin pyrkii muodostumaan uusia kiteitä tai olemassa olevat kiteet kasvavat. Ylikylläisyys on yksi tärkeimmistä kidetuotteen laatuun vaikuttavista tekijöistä. Jäähdytyskiteytyksessä syntyvän tuotteen ominaisuuksiin voidaan vaikuttaa mm. liuottimen valinnalla, jäähdytyprofiililla ja sekoituksella. Lisäksi kiteytysprosessin käynnistymisvaihe eli ensimmäisten kiteiden muodostumishetki vaikuttaa tuotteen ominaisuuksiin. Kidemäisen tuotteen laatu määritellään kiteiden keskimääräisen koon, koko- ja muotojakaumansekä puhtauden perusteella. Lääketeollisuudessa on usein vaatimuksena, että tuote edustaa tiettyä polymorfimuotoa, mikä tarkoittaa molekyylien kykyä järjestäytyä kidehilassa usealla eri tavalla. Edellä mainitut ominaisuudet vaikuttavat tuotteen jatkokäsiteltävyyteen, kuten mm. suodattuvuuteen, jauhautuvuuteen ja tabletoitavuuteen. Lisäksi polymorfiamuodolla on vaikutusta moniin tuotteen käytettävyysominaisuuksiin, kuten esim. lääkeaineen liukenemisnopeuteen elimistössä. Väitöstyössä on tutkittu sulfatiatsolin jäähdytyskiteytystä käyttäen useita eri liuotinseoksia ja jäähdytysprofiileja sekä tarkasteltu näiden tekijöiden vaikutustatuotteen laatuominaisuuksiin. Infrapunaspektroskopia on laajalti kemian alan tutkimuksissa sovellettava menetelmä. Siinä mitataan tutkittavan näytteenmolekyylien värähtelyjen aiheuttamia spektrimuutoksia IR alueella. Tutkimuksessa prosessinaikaiset mittaukset toteutettiin in-situ reaktoriin sijoitettavalla uppoanturilla käyttäen vaimennettuun kokonaisheijastukseen (ATR) perustuvaa Fourier muunnettua infrapuna (FTIR) spektroskopiaa. Jauhemaiset näytteet mitattiin off-line diffuusioheijastukseen (DRIFT) perustuvalla FTIR spektroskopialla. Monimuuttujamenetelmillä (kemometria) voidaan useita satoja, jopa tuhansia muuttujia käsittävä spektridata jalostaa kvalitatiiviseksi (laadulliseksi) tai kvantitatiiviseksi (määrälliseksi) prosessia kuvaavaksi informaatioksi. Väitöstyössä tarkasteltiin laajasti erilaisten monimuuttujamenetelmien soveltamista mahdollisimman monipuolisen prosessia kuvaavan informaation saamiseksi mitatusta spektriaineistosta. Väitöstyön tuloksena on ehdotettu kalibrointirutiini liuenneen aineen konsentraation ja edelleen ylikylläisyystason mittaamiseksi kiteytysprosessin aikana. Kalibrointirutiinin kehittämiseen kuuluivat aineiston hyvyyden tarkastelumenetelmät, aineiston esikäsittelymenetelmät, varsinainen kalibrointimallinnus sekä mallin validointi. Näin saadaan reaaliaikaista informaatiota kiteytysprosessin ajavasta voimasta, mikä edelleen parantaa kyseisen prosessin tuntemusta ja hallittavuutta. Ylikylläisyystason vaikutuksia syntyvän kidetuotteen laatuun seurattiin usein kiteytyskokein. Työssä on esitetty myös monimuuttujaiseen tilastolliseen prosessinseurantaan perustuva menetelmä, jolla voidaan ennustaa spontaania primääristä ytimenmuodostumishetkeä mitatusta spektriaineistosta sekä mahdollisesti päätellä ydintymisessä syntyvä polymorfimuoto. Ehdotettua menetelmää hyödyntäen voidaan paitsi ennakoida kideytimien muodostumista myös havaita mahdolliset häiriötilanteet kiteytysprosessin alkuhetkillä. Syntyvää polymorfimuotoa ennustamalla voidaan havaita ei-toivotun polymorfin ydintyminen,ja mahdollisesti muuttaa kiteytyksen ohjausta halutun polymorfimuodon saavuttamiseksi. Monimuuttujamenetelmiä sovellettiin myös kiteytyspanosten välisen vaihtelun määrittämiseen mitatusta spektriaineistosta. Tämäntyyppisestä analyysistä saatua informaatiota voidaan hyödyntää kiteytysprosessien suunnittelussa ja optimoinnissa. Väitöstyössä testattiin IR spektroskopian ja erilaisten monimuuttujamenetelmien soveltuvuutta kidetuotteen polymorfikoostumuksen nopeaan määritykseen. Jauhemaisten näytteiden luokittelu eri polymorfeja sisältäviin näytteisiin voitiin tehdä käyttäen tarkoitukseen soveltuvia monimuuttujaisia luokittelumenetelmiä. Tämä tarjoaa nopean menetelmän jauhemaisen näytteen polymorfikoostumuksen karkeaan arviointiin, eli siihen mitä yksittäistä polymorfia kyseinen näyte pääasiassa sisältää. Varsinainen kvantitatiivinen analyysi, eli sen selvittäminen paljonko esim. painoprosentteina näyte sisältää eri polymorfeja, vaatii kaikki polymorfit kattavan fysikaalisen kalibrointisarjan, mikä voi olla puhtaiden polymorfien huonon saatavuuden takia hankalaa.