836 resultados para Multisensory processing
Resumo:
In order to interact with the multisensory world that surrounds us, we must integrate various sources of sensory information (vision, hearing, touch...). A fundamental question is thus how the brain integrates the separate elements of an object defined by several sensory components to form a unified percept. The superior colliculus was the main model for studying multisensory integration. At the cortical level, until recently, multisensory integration appeared to be a characteristic attributed to high-level association regions. First, we describe recently observed direct cortico-cortical connections between different sensory cortical areas in the non-human primate and discuss the potential role of these connections. Then, we show that the projections between different sensory and motor cortical areas and the thalamus enabled us to highlight the existence of thalamic nuclei that, by their connections, may represent an alternative pathway for information transfer between different sensory and/or motor cortical areas. The thalamus is in position to allow a faster transfer and even an integration of information across modalities. Finally, we discuss the role of these non-specific connections regarding behavioral evidence in the monkey and recent electrophysiological evidence in the primary cortical sensory areas.
Resumo:
Huntington's disease is an inherited neurodegenerative disease that causes motor, cognitive and psychiatric impairment, including an early decline in ability to recognize emotional states in others. The pathophysiology underlying the earliest manifestations of the disease is not fully understood; the objective of our study was to clarify this. We used functional magnetic resonance imaging to investigate changes in brain mechanisms of emotion recognition in pre-manifest carriers of the abnormal Huntington's disease gene (subjects with pre-manifest Huntington's disease): 16 subjects with pre-manifest Huntington's disease and 14 control subjects underwent 1.5 tesla magnetic resonance scanning while viewing pictures of facial expressions from the Ekman and Friesen series. Disgust, anger and happiness were chosen as emotions of interest. Disgust is the emotion in which recognition deficits have most commonly been detected in Huntington's disease; anger is the emotion in which impaired recognition was detected in the largest behavioural study of emotion recognition in pre-manifest Huntington's disease to date; and happiness is a positive emotion to contrast with disgust and anger. Ekman facial expressions were also used to quantify emotion recognition accuracy outside the scanner and structural magnetic resonance imaging with voxel-based morphometry was used to assess the relationship between emotion recognition accuracy and regional grey matter volume. Emotion processing in pre-manifest Huntington's disease was associated with reduced neural activity for all three emotions in partially separable functional networks. Furthermore, the Huntington's disease-associated modulation of disgust and happiness processing was negatively correlated with genetic markers of pre-manifest disease progression in distributed, largely extrastriatal networks. The modulated disgust network included insulae, cingulate cortices, pre- and postcentral gyri, precunei, cunei, bilateral putamena, right pallidum, right thalamus, cerebellum, middle frontal, middle occipital, right superior and left inferior temporal gyri, and left superior parietal lobule. The modulated happiness network included postcentral gyri, left caudate, right cingulate cortex, right superior and inferior parietal lobules, and right superior frontal, middle temporal, middle occipital and precentral gyri. These effects were not driven merely by striatal dysfunction. We did not find equivalent associations between brain structure and emotion recognition, and the pre-manifest Huntington's disease cohort did not have a behavioural deficit in out-of-scanner emotion recognition relative to controls. In addition, we found increased neural activity in the pre-manifest subjects in response to all three emotions in frontal regions, predominantly in the middle frontal gyri. Overall, these findings suggest that pathophysiological effects of Huntington's disease may precede the development of overt clinical symptoms and detectable cerebral atrophy.
Resumo:
We describe one of the research lines of the Grup de Teoria de Funcions de la UAB UB, which deals with sampling and interpolation problems in signal analysis and their connections with complex function theory.
Resumo:
Maps of Iowa's Biodiesel and Ethanol Processing Plants.
Resumo:
A better integration of the information conveyed by traces within intelligence-led framework would allow forensic science to participate more intensively to security assessments through forensic intelligence (part I). In this view, the collection of data by examining crime scenes is an entire part of intelligence processes. This conception frames our proposal for a model that promotes to better use knowledge available in the organisation for driving and supporting crime scene examination. The suggested model also clarifies the uncomfortable situation of crime scene examiners who must simultaneously comply with justice needs and expectations, and serve organisations that are mostly driven by broader security objectives. It also opens new perspective for forensic science and crime scene investigation, by the proposal to follow other directions than the traditional path suggested by dominant movements in these fields.
Resumo:
The Office of Special Investigations at Iowa Department of Transportation (DOT) collects FWD data on regular basis to evaluate pavement structural conditions. The primary objective of this study was to develop a fully-automated software system for rapid processing of the FWD data along with a user manual. The software system automatically reads the FWD raw data collected by the JILS-20 type FWD machine that Iowa DOT owns, processes and analyzes the collected data with the rapid prediction algorithms developed during the phase I study. This system smoothly integrates the FWD data analysis algorithms and the computer program being used to collect the pavement deflection data. This system can be used to assess pavement condition, estimate remaining pavement life, and eventually help assess pavement rehabilitation strategies by the Iowa DOT pavement management team. This report describes the developed software in detail and can also be used as a user-manual for conducting simulation studies and detailed analyses. *********************** Large File ***********************
Resumo:
Humans experience the self as localized within their body. This aspect of bodily self-consciousness can be experimentally manipulated by exposing individuals to conflicting multisensory input, or can be abnormal following focal brain injury. Recent technological developments helped to unravel some of the mechanisms underlying multisensory integration and self-location, but the neural underpinnings are still under investigation, and the manual application of stimuli resulted in large variability difficult to control. This paper presents the development and evaluation of an MR-compatible stroking device capable of presenting moving tactile stimuli to both legs and the back of participants lying on a scanner bed while acquiring functional neuroimaging data. The platform consists of four independent stroking devices with a travel of 16-20 cm and a maximum stroking velocity of 15 cm/s, actuated over non-magnetic ultrasonic motors. Complemented with virtual reality, this setup provides a unique research platform allowing to investigate multisensory integration and its effects on self-location under well-controlled experimental conditions. The MR-compatibility of the system was evaluated in both a 3 and a 7 Tesla scanner and showed negligible interference with brain imaging. In a preliminary study using a prototype device with only one tactile stimulator, fMRI data acquired on 12 healthy participants showed visuo-tactile synchrony-related and body-specific modulations of the brain activity in bilateral temporoparietal cortex.
Resumo:
Proneuropeptide Y (ProNPY) undergoes cleavage at a single dibasic site Lys38-Arg39 resulting in the formation of 1-39 amino acid NPY which is further processed successively by carboxypeptidase-like and peptidylglycine alpha-amidating monooxygenase enzymes. To investigate whether prohormone convertases are involved in ProNPY processing, a vaccinia virus derived expression system was used to coexpress recombinant ProNPY with each of the prohormone convertases PC1/3, PC2, furin, and PACE4 in Neuro2A and NIH 3T3 cell lines as regulated neuroendocrine and constitutive prototype cell lines, respectively. The analysis of processed products shows that only PC1/3 generates NPY in NIH 3T3 cells while both PC1/3 and PC2 are able to generate NPY in Neuro2A cells. The convertases furin and PACE4 are unable to process ProNPY in either cell line. Moreover, comparative in vitro cleavage of recombinant NPY precursor by the enzymes PC1/3, PC2 and furin shows that only PC1/3 and PC2 are involved in specific cleavage of the dibasic site. Kinetic studies demonstrate that PC1/3 cleaves ProNPY more efficiently than PC2. The main difference between the cleavage efficiency is observed in the Vmax values whereas no major difference is observed in Km values. In addition the cleavage by PC1/3 and PC2 of two peptides reproducing the dibasic cleavage site with different amino acid sequence lengths namely (20-49)-ProNPY and (28-43)-ProNPY was studied. These shortened ProNPY substrates, when recognized by the enzymes, are more efficiently cleaved than ProNPY itself. The shortest peptide is not cleaved by PC2 while it is by PC1/3. On the basis of these observations it is proposed, first, that the constitutive secreted NPY does not result from the cleavage carried out by ubiquitously expressed enzymes furin and PACE4; second, that PC1/3 and PC2 are not equipotent in the cleavage of ProNPY; and third, substrate peptide length might discriminate PC1/3 and PC2 processing activity.
Resumo:
Multisensory and sensorimotor integrations are usually considered to occur in superior colliculus and cerebral cortex, but few studies proposed the thalamus as being involved in these integrative processes. We investigated whether the organization of the thalamocortical (TC) systems for different modalities partly overlap, representing an anatomical support for multisensory and sensorimotor interplay in thalamus. In 2 macaque monkeys, 6 neuroanatomical tracers were injected in the rostral and caudal auditory cortex, posterior parietal cortex (PE/PEa in area 5), and dorsal and ventral premotor cortical areas (PMd, PMv), demonstrating the existence of overlapping territories of thalamic projections to areas of different modalities (sensory and motor). TC projections, distinct from the ones arising from specific unimodal sensory nuclei, were observed from motor thalamus to PE/PEa or auditory cortex and from sensory thalamus to PMd/PMv. The central lateral nucleus and the mediodorsal nucleus project to all injected areas, but the most significant overlap across modalities was found in the medial pulvinar nucleus. The present results demonstrate the presence of thalamic territories integrating different sensory modalities with motor attributes. Based on the divergent/convergent pattern of TC and corticothalamic projections, 4 distinct mechanisms of multisensory and sensorimotor interplay are proposed.