861 resultados para Multi Domain Information Model
Resumo:
Includes index.
Resumo:
"June 1969."
Resumo:
Includes index.
Resumo:
"February 1968."
Resumo:
"6 July 1984."
Resumo:
Semantic data models provide a map of the components of an information system. The characteristics of these models affect their usefulness for various tasks (e.g., information retrieval). The quality of information retrieval has obvious important consequences, both economic and otherwise. Traditionally, data base designers have produced parsimonious logical data models. In spite of their increased size, ontologically clearer conceptual models have been shown to facilitate better performance for both problem solving and information retrieval tasks in experimental settings. The experiments producing evidence of enhanced performance for ontologically clearer models have, however, used application domains of modest size. Data models in organizational settings are likely to be substantially larger than those used in these experiments. This research used an experiment to investigate whether the benefits of improved information retrieval performance associated with ontologically clearer models are robust as the size of the application domains increase. The experiment used an application domain of approximately twice the size as tested in prior experiments. The results indicate that, relative to the users of the parsimonious implementation, end users of the ontologically clearer implementation made significantly more semantic errors, took significantly more time to compose their queries, and were significantly less confident in the accuracy of their queries.
Resumo:
Domain specific information retrieval has become in demand. Not only domain experts, but also average non-expert users are interested in searching domain specific (e.g., medical and health) information from online resources. However, a typical problem to average users is that the search results are always a mixture of documents with different levels of readability. Non-expert users may want to see documents with higher readability on the top of the list. Consequently the search results need to be re-ranked in a descending order of readability. It is often not practical for domain experts to manually label the readability of documents for large databases. Computational models of readability needs to be investigated. However, traditional readability formulas are designed for general purpose text and insufficient to deal with technical materials for domain specific information retrieval. More advanced algorithms such as textual coherence model are computationally expensive for re-ranking a large number of retrieved documents. In this paper, we propose an effective and computationally tractable concept-based model of text readability. In addition to textual genres of a document, our model also takes into account domain specific knowledge, i.e., how the domain-specific concepts contained in the document affect the document’s readability. Three major readability formulas are proposed and applied to health and medical information retrieval. Experimental results show that our proposed readability formulas lead to remarkable improvements in terms of correlation with users’ readability ratings over four traditional readability measures.
Resumo:
A technique is presented for the development of a high precision and resolution Mean Sea Surface (MSS) model. The model utilises Radar altimetric sea surface heights extracted from the geodetic phase of the ESA ERS-1 mission. The methodology uses a modified Le Traon et al. (1995) cubic-spline fit of dual ERS-1 and TOPEX/Poseidon crossovers for the minimisation of radial orbit error. The procedure then uses Fourier domain processing techniques for spectral optimal interpolation of the mean sea surface in order to reduce residual errors within the model. Additionally, a multi-satellite mean sea surface integration technique is investigated to supplement the first model with additional enhanced data from the GEOSAT geodetic mission.The methodology employs a novel technique that combines the Stokes' and Vening-Meinsz' transformations, again in the spectral domain. This allows the presentation of a new enhanced GEOSAT gravity anomaly field.
Resumo:
One of the most important problems of e-learning system is studied in given paper. This problem is building of data domain model. Data domain model is based on usage of correct organizing knowledge base. In this paper production-frame model is offered, which allows structuring data domain and building flexible and understandable inference system, residing in production system.
Resumo:
In this paper is proposed a model for researching the capability to influence, by selected methods’ groups of compression, to the co-efficient of information security of selected objects’ groups, exposed to selected attacks’ groups. With the help of methods for multi-criteria evaluation are chosen the methods’ groups with the lowest risk with respect to the information security. Recommendations for future investigations are proposed.
Resumo:
The polyparametric intelligence information system for diagnostics human functional state in medicine and public health is developed. The essence of the system consists in polyparametric describing of human functional state with the unified set of physiological parameters and using the polyparametric cognitive model developed as the tool for a system analysis of multitude data and diagnostics of a human functional state. The model is developed on the basis of general principles geometry and symmetry by algorithms of artificial intelligence systems. The architecture of the system is represented. The model allows analyzing traditional signs - absolute values of electrophysiological parameters and new signs generated by the model – relationships of ones. The classification of physiological multidimensional data is made with a transformer of the model. The results are presented to a physician in a form of visual graph – a pattern individual functional state. This graph allows performing clinical syndrome analysis. A level of human functional state is defined in the case of the developed standard (“ideal”) functional state. The complete formalization of results makes it possible to accumulate physiological data and to analyze them by mathematics methods.
Resumo:
The information domain is a recognised sphere for the influence, ownership, and control of information and it's specifications, format, exploitation and explanation (Thompson, 1967). The article presents a description of the financial information domain issues related to the organisation and operation of a stock market. We review the strategic, institutional and standards dimensions of the stock market information domain in relation to the current semantic web knowledge and how and whether this could be used in modern web based stock market information systems to provide the quality of information that their stakeholders want. The analysis is based on the FINE model (Blanas, 2003). The analysis leads to a number of research questions for future research.
Resumo:
An automated cognitive approach for the design of Information Systems is presented. It is supposed to be used at the very beginning of the design process, between the stages of requirements determination and analysis, including the stage of analysis. In the context of the approach used either UML or ERD notations may be used for model representation. The approach provides the opportunity of using natural language text documents as a source of knowledge for automated problem domain model generation. It also simplifies the process of modelling by assisting the human user during the whole period of working upon the model (using UML or ERD notations).
Resumo:
A model of the cognitive process of natural language processing has been developed using the formalism of generalized nets. Following this stage-simulating model, the treatment of information inevitably includes phases, which require joint operations in two knowledge spaces – language and semantics. In order to examine and formalize the relations between the language and the semantic levels of treatment, the language is presented as an information system, conceived on the bases of human cognitive resources, semantic primitives, semantic operators and language rules and data. This approach is applied for modeling a specific grammatical rule – the secondary predication in Russian. Grammatical rules of the language space are expressed as operators in the semantic space. Examples from the linguistics domain are treated and several conclusions for the semantics of the modeled rule are made. The results of applying the information system approach to the language turn up to be consistent with the stages of treatment modeled with the generalized net.
Resumo:
It is proposed an agent approach for creation of intelligent intrusion detection system. The system allows detecting known type of attacks and anomalies in user activity and computer system behavior. The system includes different types of intelligent agents. The most important one is user agent based on neural network model of user behavior. Proposed approach is verified by experiments in real Intranet of Institute of Physics and Technologies of National Technical University of Ukraine "Kiev Polytechnic Institute”.